
Quantum Field Theory

Set 3: solutions

Exercise 1

The Lagrangian of the system is

L =

∫
d3xL(x, t) L(x, t) = 1

2
(∂µϕ)(∂

µϕ)− 1

2
m2ϕ2 − λ

4!
ϕ4.

The conjugate momentum is

π(x, t) =
δ L

δ(∂0ϕ)
=

∂ L(x, t)
∂(∂0ϕ(x, t))

= ∂0ϕ(x, t).

The Hamiltonian reads

H =

∫
d3xH(x, t) =

∫
d3x [π∂0ϕ− L] =

∫
d3x

[
1

2
π2 +

1

2
(∂iϕ)(∂iϕ) +

1

2
m2ϕ2 +

λ

4!
ϕ4

]
.

Given two functionals of ϕ, π

F [ϕ, π](t) =

∫
f(ϕ(x, t), π(x, t))d3x,

One defines the equal time Poisson brackets between the two as

{F (t), G(t)} =

∫ (
δ F

δπ(z, t)

δ G

δϕ(z, t)
− δ F

δϕ(z, t)

δ G

δπ(z, t)

)
d3z,

where as usual δ F
δϕ(z,t) =

∂ f(z,t)
∂ϕ(z,t) . In particular

{π(x, t), ϕ(y, t)}t =
∫ (

δ
(∫

d3x1π(x1, t)δ
3(x− x1)

)
δπ(z, t)

δ
(∫

d3x2ϕ(x2, t)δ
3(y − x2)

)
δϕ(z, t)

−
δ
(∫

d3x1π(x1, t)δ
3(x− x1)

)
δϕ(z, t)

δ
(∫

d3x1ϕ(x2, t)δ
3(y − x2)

)
δπ(z, t)

)
d3z

=

∫ (
δ3(x− z)δ3(y − z)

)
d3z = δ3(x− y).

The equations of motion become:

ϕ̇ = {H,ϕ},
π̇ = {H,π},

and therefore

ϕ̇(y, t) = {H,ϕ(y, t)} =

∫
d3x

{
1

2
π2(x, t), ϕ(y, t)

}
=

∫
d3x π(x, t){π(x, t), ϕ(y, t)} = π(y, t),

π̇(y, t) = {H,π(y, t)} =

∫
d3x

{
1

2
(∂iϕ(x, t))

2 +
1

2
m2ϕ2(x, t) +

λ

4!
ϕ4(x, t), π(y, t)

}
=

=

∫
d3x

(
∂iϕ(x, t){∂iϕ(x, t), π(y, t)}+m2ϕ(x, t){ϕ(x, t), π(y, t)}+ λ

3!
ϕ3(x, t){ϕ(x, t), π(y, t)}

)
= −

∫
d3x

(
∂iϕ(x, t)

∂

∂xi
δ3(x− y) + (m2ϕ(x, t) +

λ

3!
ϕ3(x, t))δ3(x− y)

)
= ∂i∂iϕ(y, t)−m2ϕ(y, t)− λ

3!
ϕ3(y, t).

Substituting the former in the latter on can show the equivalence with the Lagrangian formalism:

∂2
t ϕ(y, t)− ∂i∂iϕ(y, t) = □ϕ(y, t) = −m2ϕ(y, t)− λ

3!
ϕ3(y, t).



Exercise 2

The Maxwell equations read

∇⃗ · E⃗ = ρ, ∇⃗ ∧ E⃗ +
1

c

∂

∂ t
B⃗ = 0,

∇⃗ · B⃗ = 0, ∇⃗ ∧ B⃗ − 1

c

∂

∂ t
E⃗ =

J⃗

c
.

One can also rewrite the latter expression in components; recalling that:

E⃗ = (E1, E2, E3), B⃗ = (B1, B2, B3), J⃗ = (J1, J2, J3), ρ = J0,

∇⃗ = (∂1, ∂2, ∂3),
∂

∂ t
= ∂0, (1)

one obtains

∂iE
i = J0, ϵijk∂jE

k +
1

c
∂0B

i = 0,

∂iB
i = 0, ϵijk∂jB

k − 1

c
∂0E

i =
J i

c
.

In defining four components quantities one must pay attention to the position of spatial indices; since these are
lowered and raised with a metric ηµν = diag(1,−1,−1,−1), with Minkosky signature the spacial indices acquire a
minus sign in the transition. For example:

V µ = (V 0, V i) = (V0,−Vi), ∂µ = (∂0, ∂i) = (∂0,−∂i).

The field strength F can be expressed in terms of the vector potential Aµ = (A0, Ai) as follows:

Fµν = ∂µAν − ∂νAµ.

One should notice the antisymmetric nature of the tensor F for the exchange of the indices µ ↔ ν. In order to
verify that this expression reflects the definition of F in terms of the physical fields E, B on can compute

F 0i = ∂0Ai − ∂iA0 = ∂0A
i + ∂iA0 = (∂0A⃗+∇A0)

i = −Ei,

F 12 = ∂1A2 − ∂2A1 = −∂1A
2 + ∂2A

1 = −(∇⃗ ∧ A⃗)3 = −B3,

where we have lowered indices of derivatives to get the standard form as defined before.
In order to compute the equations of motion for the field Aµ one has to apply the Euler-Lagrange equation. This
time the field with respect to which we differentiate carries an additional space-time index:

∂µ

(
∂ L

∂(∂µ Aν)

)
=

∂ L
∂Aν

.

The previous equation contains a free index ν, which selects the component of the field Aν with respect to which
one derives (therefore one has 4 ”independent” equations), and a summed index µ. The equations read

∂µ

(
∂ L

∂(∂µ Aν)

)
= ∂µ

∂

∂(∂µAν)

[
−1

4
(∂ρAσ − ∂σAρ) (∂

ρAσ − ∂σAρ)

]
= ∂µ

∂

∂(∂µAν)

[
−1

2
(∂ρAσ − ∂σAρ) ∂

ρAσ

]
= ∂µ

∂

∂(∂µAν)

[
−1

2
(∂ρAσ − ∂σAρ) ∂αAβη

ραησβ
]

= ∂µ

[
−1

2

(
δµρ δνσ − δµσ δνρ

)
∂αAβη

ραησβ − 1

2
(∂ρAσ − ∂σAρ) δ

µ
α δνβ η

ραησβ
]
= −∂µF

µν ,

∂ L
∂Aν

=
∂

∂ Aν
(−JρAρ) = −Jρδνρ = −Jν , (2)

where we have derived using the relation
∂(∂µAν)

∂(∂ρAσ)
= δρµδ

σ
ν ,
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that is to say that one gets non-vanishing contribution only if the indices of derivative and of the vector A match.
Otherwise the derivative gives zero since it’s like deriving a variable with respect to an independent one. Finally
the equations of motion are given by

∂µF
µν = Jν .

At this point it’s straightforward to verify that one has obtained exactly the Maxwell equations: the component
0 reads

∂µF
µ0 = ∂iF

i0 = J0 = −∂iF
0i = ∂iE

i = ρ,

while the component i is
∂µF

µi = ∂0F
0i + ∂jF

ji = −∂0E
i − ∂jϵjikB

k = J i,

where we have used the property Fmn = Fmn = −ϵmnpB
p. However we immediately see that the Euler-Lagrange

equations reproduce only the inhomogeneous Maxwell equations, that is to say the ones with a source on their
l.h.s.. The homogeneous equations derive from the so called Bianchi identity :

ϵµνρσ∂
νF ρσ = 2ϵµνρσ∂

ν∂ρAσ = 0,

since the tensor ∂ν∂ρ is contracted with the total antisymmetric tensor ϵµνρσ. Expanding the identity one gets:

ϵ0νρσ∂
νF ρσ = ϵ0ijk∂

iF jk = −ϵijk∂
iϵjklBl = −2∂iB

i = 0

ϵiνρσ∂
νF ρσ = ϵi0jk∂

0F jk + 2ϵij0k∂
jF 0k

= ϵijk∂
0ϵjklBl + 2ϵijk∂

j(−Ek) = 2∂0B
i + 2ϵijk∂jE

k = 0.

The Bianchi identities are relation encoded in the structure of the field strength and find their natural explication
in the formalism of differential forms.
One can solve the latter equation for a simple external source. The simplest current one can think about is the
one generated by a static pointlike charge. In general the current generated by a pointlike particle has the form

Jµ =
(
eδ3(x− x(t)), ev⃗(t)δ3(x− x(t))

)
,

however, since the particle doesn’t move, its velocity v⃗ is null and the current has only the 0-component. Therefore

Jµ =
(
eδ3(x), 0⃗

)
. For such a configuration one should expect to find the Coulomb potential generated by a charge

e. Since the current is time independent we can look for a static solution. We start considering the equation for
the scalar potential A0(x⃗):

∂iE
i = ∂i(−∂iA0 − ∂0A

i) = −∇2A0(x) = eδ3(x).

The solution of this Laplace equation can be easily obtained in Fourier transform; define

A0(x⃗) =

∫ ∞

−∞

d3p

(2π)3
Ã(p⃗)eip⃗·x⃗, δ3(x⃗) =

∫ ∞

−∞

d3p

(2π)3
eip⃗·x⃗.

therefore the equation becomes∫ ∞

−∞

d3p

(2π)3

(
Ã(p⃗)∂i∂i + e

)
eip⃗·x⃗ =

∫ ∞

−∞

d3p

(2π)3

(
−Ã(p⃗)|p⃗|2 + e

)
eip⃗·x⃗ = 0.

The latter expression states that the function
(
−|p⃗|2Ã(p⃗) + e

)
, thought as an element of the Hilbert space where

the Fourier transform is defined, has vanishing scalar product with all the functions eip⃗·x⃗ which is a complete basis
in that space. Therefore it must be

Ã(p⃗) =
e

|p⃗|2
.

The solution in coordinate space is simply obtained by Fourier transforming the one in momentum space:

A0(x⃗) = e

∫ ∞

−∞

d3p

(2π)3
eip⃗·x⃗

|p⃗|2
= e

∫ ∞

0

dp
p2

(2π)3

∫ 1

−1

d(cos θ)

∫ 2π

0

dϕ
eipx cos θ

p2

=
e

4π2

∫ ∞

0

dp

(
e−ipx − eipx

−ipx

)
=

e

2π2

∫ ∞

0

dp

(
sin (px)

px

)
=

e

2π2x

∫ ∞

0

dy
sin y

y︸ ︷︷ ︸
π/2

=
e

4π

1

|x⃗|
,
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which is the usual Coulomb scalar potential generated by a static charge and gives an electric field

E⃗ = −∇⃗A0(x⃗) =
e

4π2

x⃗

|x⃗|3
.

The vector potential satisfies the homogeneous equation ∇2A⃗(x⃗)− ∇⃗(∇⃗ · A⃗(x⃗)) = 0. Thus, we can choose A⃗ = 0.

Exercise 3

In order to define a group G, a set of transformations {gi} has to satisfy the following four properties:

• An operation ◦ must be defined on the set {gi} such that for each g1, g2 ∈ G: g1 ◦ g2 ≡ g3 ∈ G. For Ũ this
operation is realized by the usual composition of functions. We can compute the group product law using
the given realization:

Ũ(α2, β2)(Ũ(α1, β1)(x)) = Ũ(α2, β2)(e
α1x+ β1)

=eα2(eα1x+ β1) + β2 = (eα1+α2)x+ (eα2β1 + β2)

=Ũ(α1 + α2, e
α2β1 + β2)(x)

So the group product law is

U(α2, β2) ◦ U(α1, β1) = U(α1 + α2, e
α2β1 + β2)

• Associativity: g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3. Function composition is associative so this requirement is
automatically fulfilled.

• The set {gi} must contain the identity element e, such that, for each g ∈ G, e ◦ g = g ◦ e = g. In our case
the identity element is precisely at the origin of the parameter space

e = U(0, 0) : x → x

• For each g ∈ G there must exist a g−1 ∈ G, the inverse element, such that g−1 ◦ g = g ◦ g−1 = e. In order to
find such an element one can denote U−1(α, β) ≡ U(ᾱ, β̄) and require

U(α, β)U(ᾱ, β̄) = U(α+ ᾱ, eαβ̄ + β) = U(0, 0) =⇒
{

ᾱ = −α
β̄ = −e−αβ.

Thus,
U−1(α, β) = U(−α,−e−αβ).

We can check that it is also a left-inverse,

U(ᾱ, β̄)U(α, β) = U(ᾱ+ α, eᾱβ + β̄) = U(0, 0).

An abelian group satisfies g1 ◦ g2 ≡ g2 ◦ g1 for any g1, g2 ∈ G. To check this we use the composition law derived
above. We see that

U(α2, β2) ◦ U(α1, β1) = U(α1 + α2, e
α2β1 + β2) ̸= U(α1 + α2, e

α1β2 + β1) = U(α1, β1) ◦ U(α2, β2).

Thus, the collinear group is not abelian.

Exercise 4

We consider a particle with position q(t) and mass m obeying the differential equation

mq̈(t) + kq2(t) = 0

with k a constant.
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• The constant k has dimension

[k] =
mass

length time2
=

M

LT 2

• Under the transformation
q(t) → q′(t′) = λ−pq(t), t′ = λt

the equation transforms as

mλpλ2 d2

d(λt)2
q′(λt) + kλ2pq′

2
(λt) = 0

The equation is invariant if
2 + p = 2p =⇒ p = 2

• The value of p could have been easily guessed from the dimension of k. Here we explain why.

The dimension of k was obtained by dimensional analysis: we are requiring that each term has the same
units. This is so that when changing units, the equation stays invariant. Changing units can be seen as
applying different dilatations :

M → λMM, T → λTT, L → λLL

where for example going from hours to minutes would be given by choosing λT = 60. We can thus think
of dimensional analysis as asking for invariance under different dilatation transformations. This is however
not necessarly a symmetry of the system as the parameters also transform, not only the variables and the
coordinates.

For example, considering time dilatation alone (λM = λL = 0), we see that the equation has the correct units
and respect dimensional analysis. However, under this dilatation transformation, the constant k transforms.
Thus, this is not a symmetry of the system. (Sometimes, when the parameters transform also, this is called
a spurious transformation. This is useful for studying approximate symmetries.)

In the previous point, we showed that the equation is actually invariant under a more generic transformation
that combines several of the previously mentionned one:

M → M, T → λT, L → λ−2L

such that under this transformation, masses have dimension 0, times dimension 1 and lengths dimension -2.
Under this transformation, both parameters m and k are dimensionless, and thus don’t transform. Because
the equation doesn’t contain any dimensionful parameter under this symmetry, it is invariant. Thus the
transformation is a symmetry for the value of p for which k is dimensionless.

Exercise 5

(Recall 1 eV = 1.602 · 10−19 J, Mp = 0.938 GeV/c2)

Velocity of protons coming from SPS:

Mpγc
2 = 450 GeV ⇒ 1

1− β2
=

(450 GeV)2

M2
p c

4
⇒ β =

√√√√ (450)2

(0.938)2 − 1

(450)2

(0.938)2

= 0.999998

Protons energy:

E = Mpγc
2 = 7 TeV

Number of protons per beam:
NP = 2.8 · 1014

Total energy of the beam:

Etot = 7 TeV ·NP = 1.96× 1015 TeV = 1.96× 1.6× 1027−19 J = 314 MJ
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One can compare this quantity with the kinetic energy of a running TGV. The velocity of the train can be easily
extracted:

1

2
MV 2

T = 314 · 106 J ⇒ VTGV =

√
2 · 3140

4
· m s−1 = 39.6 m s−1 = 143 Km/h

One can also compute the total current circulating inside the ring: in the interval of 1 s a number of bunches

NB =
(
27 Km/3 · 105

)−1
passes in a given point of the ring. The total charge passing through that point in a

second is given by:

Q = NB · 2800 · 1.6 · 1011−19 C = 0.498 C ⇒ I =
Q

s
= 0.498 A.

Suppose we want to strike a target b at rest with a particle a with energy in the laboratory Ẽa in such a way that
in the center of mass the energy is

√
s = 14 TeV. We need to compute Ẽa as a function of

√
s. We can use the

property that the value of the square of a four momentum is independent of the frame in which it is computed:

P 2 = P̃ 2 = (P̃a + P̃b)
2 ⇒ s = m2

a +m2
b + 2mbẼa

Substituting
√
s = 14 TeV and ma = mb ≃ 1 GeV (at LHC we collide protons) we get:

Ẽa =
s−m2

a −m2
b

2mb
≃ 98× 103 TeV

Colliding with fixed 208Pb target, i.e. replacing mb ≃ 208 GeV, we get

Ẽa ≃ 4.7× 102 TeV

We see immediately the convenience of having a collider with two beams circulating in opposite direction and
equal energy.

Suppose now you want to build a fixed target collider. At regime the power loss must be balanced by the energy
given per lap by the electric field. Calling r the radius of the accellerator, a proton makes 2πr/β ≃ 2πR number
of laps per second (in natural units). Calling Ein the energy gained per lap by a single particle, we require

Ein

2πr
≥ P =

2e2

3r2
(βγ)4 ≃ 2e2

3r2

(
Ẽa

ma

)4

.

The minimum value of r for which this is possible, is thus given by

rmin =
4πe2

3Ein

(
Ẽa

ma

)4

≃ 4πe2

3Ein

(
s

2mbma

)4

, (3)

where we used the relation between the energy in the center of mass frame and in the lab frame and that
s ≫ mb,ma. Setting ma ≃ mb ≃ 1GeV, we have

rmin ≃ 2.4× 1016 eV−1

(
MeV

Ein

)( √
s

TeV

)8

≃ 4.7× 109 m

(
1 MeV

Ein

)( √
s

1 TeV

)8

. (4)

Setting for instance
√
s ≃ 1.5 TeV and Ein ≃ 103 MeV, we get that r should be of the order of the earth radius:

rmin ∼ 108 m. (5)
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Figure 1: Fermi proposal for a fixed target high energy collider in 1954.
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