
Quantum Field Theory

Set 1: solutions

Exercise 1

The system of natural units is a choice of units of measure commonly employed
in QFT in order to simplify the notation. It corresponds to measuring velocities
in units of speed of light c and quantities with dimensions of an action in units
of ℏ. Using this trick, one can reduce every physical unit to the only remaining
one, the energy, usually measured in eV (or GeV = 109 eV). In the following
we use the fact that c ∼ L/T and ℏ ∼ML2/T .

1. M ∼M
c2

c2
∼ eV

c2
∼ eV

2. T ∼ML2/ℏ ∼ c2

ℏ
MT 2 =⇒ T ∼ 1/M ∼ (eV)

−1

3. L ∼ cT ∼ (eV)
−1

4. v ∼ L

T
∼ (eV)

0

5. F ∼ ML

T 2
∼ (eV)

2 1

ℏc
∼ (eV)

2

6. Coulomb Force ∼ e2

L2
⇒ e2 ∼ FL2 ∼ (eV)

0

7. E ∼ Fe

e
∼ (eV)

2

8. Lorentz Force ∼ evB ⇒ B ∼ FM

ev
∼ (eV)

2

Notice that one could infer the dimensionality of time and length considering
for example an incoming wave with energy E. The associated frequency (in-
verse of time) is defined by ν = E/h and the wavelength by λ = c/ν. Indeed
highly energetic waves correspond to X-rays while, decreasing the energy (and
correspondingly the frequency), one reaches UV-rays, IR-rays radio-waves and
so on.

Exercise 2

Let’s start by computing the dimensions of the objects we are given. Obviously
m is a mass so [m] = M . Since c is a speed it has units [c] = LT−1. Finally



using the familiar relation E = ℏω we deduce that [ℏ] = [E]T = ML2T−1. We
can now use these relations to combine these quantities to form an object with
units of length

λ ≡ ℏ
mc

, [λ] = L.

This is the Compton wavelength (up to a factor of 2π). It corresponds to the
wavelength of a photon with energy equal to the particle’s rest mass energy,
Ephoton = mc2. Experiments done at these energies will necessarily involve
relativistic velocities. The Compton wavelength tells us the length scale be-
low which a relativistic, or better quantum field theoretic, description becomes
necessary.

For the proton (mp = 938MeV/c2) we get

λ =
ℏ
mc

=
ℏc

938MeV
=

197

938
fm ≈ 2.10× 10−14 cm.

Similarly for the electron (me = 0.511 MeV) we get λ = 3.86× 10−11 cm.

The mass uncertainty has units of mass, [Γ] = [M ] = [E][c]−2. Thus, using
[ℏ] = [E][T ] we can easily construct an object with units of time,

τ ≡ ℏ
Γc2

, [Γ] = T.

Since Γc2 = ∆E is an energy uncertainty, we can see τ as a time uncertainty,

∆E∆t ∼ Γc2 τ ≳ ℏ.

A particle with no mass uncertainty cannot be located in time (∆t = ∞).
This means that in principle it will exist forever and always has existed, it’s
a stable particle. On the other hand, a particle with some width Γ will have
an associated finite time uncertainty τ , a time interval outside which we cannot
locate the particle. We can thus interpret τ as the lifetime of the particle. (This
is made more precise in the context of quantum field theory.)

The lifetime of the Z boson is given by

τ =
ℏ

2.495GeV
≈ 6.582

2.495
× 10−25 s = 2.638× 10−25 s.

In the non-relativistic limit c cannot be relevant. The internal dynamics of
a two-body system can only depend on the reduced mass µ =

mpme

mp+me
and since

mp ≫ me we have µ ≈ me meaning that we may also discard mp. We are
left with [me] = [E]L−2T 2, [ℏ] = [E]T and [e2] = [E]L. The units for e can
be deduced from the Coulomb force (previous exercise) using [Force] = [E]L−1.
Solving for L and E we find the following quantities

r =
ℏ2

e2me
∼ L, ϵ =

e4me

ℏ2
∼ E.

2



The Gaussian system of units expresses every quantity in units of E, L, T . One
way of finding the value of the elementary charge in this system is to use the
value of the fine structure constant

α =
1

4πϵ0

e2

ℏc
≈ 1

137
.

This constant is dimensionless, so its value is the same in every unit system. In
our case since 4πϵ0 = 1 we can invert the equation to find

e2 ≈ 1

137
ℏc ≈ 197

137
MeV · fm ≈ 1.438× 10−7eV · cm.

Then, using ℏ = 6.582× 10−16 eV · s and me = 0.511× 106 eV/c2 we get

r ≈ 5.3× 10−9 cm, ϵ ≈ 27.1 eV.

These are, respectively, the Bohr radius and (twice) the absolute value of the
Hydrogen ground state energy. Note that dimensional analysis cannot fix di-
mensionless numerical factors, hence the discrepancy between ϵ and 13.6 eV.

Exercise 3

• Starting with

dτ =
√
c2dt2 − dx2 − dy2 − dz2, (1)

we factor out cdt to obtain

dτ = c

√
1− v2

c2
dt, and S =

∫
Ldt with L = αc

√
1− v2

c2
.

(2)

• Expanding the Lagrangian L in v
c we get

L = αc− α

2c
v2 + . . . (3)

Ignoring the first term (it does not contribute to the equations of motion)
we see that fixing α = −mc yields the Newtonian Lagrangian for a free
particle.

• Using α = −mc we may now compute the canonical momentum p⃗ = ∂L
∂v⃗

and the Hamiltonian H = p⃗ · v⃗ − L giving

p⃗ =
mv⃗√
1− v2

c2

, and H =
mc2√
1− v2

c2

. (4)

Expressing v in terms of p we obtain the energy-momentum relation (also
known as mass-shell condition)

E = H =
√
m2c4 + p2c2. (5)
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Exercise 4

We can write the Lorentz transformations in term of the rapidity parameter η
(defined in terms of the velocity β = tanh η) as

t′ =t cosh η − x sinh η

x′ =x cosh η − t sinh η

In the same way,

t =t′ cosh η + x′ sinh η

x =x′ cosh η + t′ sinh η

From these equations we can easily find how the derivatives transform

∂′t =
∂t

∂t′
∂t +

∂x

∂t′
∂x = cosh η ∂t + sinh η ∂x

∂′x =
∂t

∂x′
∂t +

∂x

∂x′
∂x = sinh η ∂t + cosh η ∂x

We now want to see that if ψ satisfies the Schroedinger equation, then the
transformed ψ′ in a new frame also satisfies the same equation in the new
frame. To see this let’s show that the following quantity is equal to zero

i∂′tψ
′(t′, x′)−

√
−∂′2x +m2ψ′(x′, t′)

=i(cosh η ∂t + sinh η ∂x)ψ(t, x)−
√
−(cosh η ∂x + sinh η ∂t)2 +m2ψ(x, t)

And we now want to show that this implies that ψ′ must satisfy the Schroedinger
equation in the new coordinates. To see this let’s do some manipulation on the
operator under the square root

− (cosh η ∂x + sinh η ∂t)
2 +m2

=− cosh2 η ∂2x − sinh2 η ∂2t − 2 sinh η cosh η ∂x∂t +m2

=− (1 + sinh2 η) ∂2x − (cosh2 η − 1) ∂2t − 2 sinh η cosh η ∂x∂t +m2

=− (cosh η ∂t + sinh η ∂x)
2 + (∂2t − ∂2x +m2)

where we have used the identity cosh η2 − sinh η2 = 1. It’s easy to see that the
Schroedinger equation implies that

−∂2t ψ(t, x) = (−∂2x +m2)ψ(t, x)

This means that when acting on a ψ that solves the Schroedinger equation, the
operator under the square root gives (if you are not convinced, remember how
the square root of an operator is defined as an infinite series)√
−(cosh η ∂t + sinh η ∂x)2 + (∂2t − ∂2x +m2)ψ(t, x) =

√
−(cosh η ∂t + sinh η ∂x)2ψ(t, x)
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So we get

i∂′tψ
′(t′, x′)−

√
−∂′2x +m2ψ′(x′, t′)

=i(cosh η ∂t + sinh η ∂x)ψ(t, x)−
√
−(cosh η ∂t + sinh η ∂x)2ψ(x, t)

=i(cosh η ∂t + sinh η ∂x)ψ(t, x)− i(cosh η ∂t + sinh η ∂x)ψ(t, x) = 0

as we wanted to show.
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