
Quantum Field Theory

Set 14: solutions

Exercise 1

Consider a massless Dirac fermion ψ =
(
ψL

ψR

)
which has the usual free Lagrangian density:

L = iψ̄ 6 ∂ ψ ≡ iψ†γ0 6 ∂ ψ.

Recalling the definition of the gamma matrices and their algebra,

γµ =

(
0 σµ

σ̄µ 0

)
, σµ = (1, σi), σ̄µ = (1,−σi), {γµ, γν} = 2 ηµν ,

one can express the Lagrangian in terms of the left and right Weyl spinors:

L = i
(
ψ†L, ψ

†
R

)( 0 1
1 0

)(
0 σµ

σ̄µ 0

)(
∂µψL
∂µψR

)
= iψ†Lσ̄

µ∂µ ψL + iψ†Rσ
µ∂µ ψR.

Notice the presence of different σ’s in the two terms. The theory is manifestly invariant under two distinct U(1)
transformations

U(1)L :

{
ψ′L = eiαψL
ψ′R = ψR,

U(1)R :

{
ψ′L = ψL
ψ′R = eiβψR,

which rotate separately left and right spinors while leaving unchanged the coordinates. The Noether’s currents
associated to the symmetries are given by

JµL =
∂L

∂(∂µψL)
∆ψL

+ ∆ψ†
L

∂L
∂(∂µψ

†
L)

= iψ†Lσ̄
µ(iψL) = −ψ†Lσ̄

µψL,

JµR =
∂L

∂(∂µψR)
∆ψR

+ ∆ψ†
R

∂L
∂(∂µψ

†
R)

= iψ†Rσ
µ(iψR) = −ψ†Rσ

µψR.

In the derivation we have used the fact that the Lagrangian density is written in an asymmetric way with respect
to ψ†L(R) and ψL(R): only the former appear in the Lagrangian with the derivative ∂µ. However one can make the

symmetry manifest simply integrating ’half’ Lagrangian density by parts: i
2ψ
†
Lσ̄

µ∂µ ψL −→ − i
2∂µψ

†
Lσ̄

µ ψL; this
doesn’t not modify the theory nor the present discussion.

Considering the sum of the two Noether’s currents gives:

JµL + JµR = −ψ†Lσ̄
µψL − ψ†Rσ

µψR = −ψ̄γµψ ≡ JµV .

JµV can be thought of as the Noether’s current associated to a U(1) transformation acting in the same way on
left-handed and on right-handed fields (it is called vectorial U(1), or U(1)V , since the spatial components of its
Noether’s current form a true vector which changes sign under parity, giving rise to a parity-invariant Lagrangian
L when contracted with the true vector ∂i):

U(1)V : ψ′ = eiαψ.

U(1)V is the subgroup of U(1)L×U(1)R obtained by performing left and right transformations with equal param-
eters α = β, but can also be seen as a transformation acting on the Dirac field.



On top of considering the sum of the original Noether’s currents one can also take their difference, JµA ≡ J
µ
R − J

µ
L .

We now show that the following transformation is a symmetry of the theory and it gives rise to the current JµA:

U(1)A : ψ′ = eiαγ
5

ψ = exp

[
iα

(
−1 0
0 1

)]
ψ =

(
e−iα 0

0 eiα

)(
ψL
ψR

)
.

Still this transformation corresponds to a subgroup of U(1)L×U(1)R where this time the left and right parameters
are taken opposite in sign. In order to implement this transformation on the Dirac field we need the matrix γ5:
the action on ψ doesn’t consist in a simple phase multiplication but involves the 4×4 matrix e−iαγ

5

which however
is parametrized by a single parameter α ∈ [0, 2π].
The free Lagrangian density is invariant under this axial transformations. In fact

ψ̄′γµ∂µψ
′ =

(
eiαγ

5

ψ
)†
γ0γµeiαγ

5

∂µψ = ψ†e−iαγ
5

γ0γµeiαγ
5

∂µψ,

and recalling that γ5 anticommutes with all the Dirac matrices, {γ5, γµ} = 0, and that (γ5)2 = 1, one has

ψ̄′γµ∂µψ
′ = ψ†e−iαγ

5

γ0γµeiαγ
5

∂µψ = ψ†γ0γµe−iαγ
5

eiαγ
5

∂µψ = ψ̄γµ∂µψ.

In the end the Noether’s current reads:

JµA =
∂L

∂(∂µψ)
∆ψ = −ψ̄γµγ5ψ = ψ†γ0γµγ5ψ = ψ†Lσ̄

µψL − ψ†Rσ
µψR = JµR − J

µ
L .

Therefore the independent symmetries U(1)L × U(1)R, acting on Weyl spinors, can be recast into two equivalent
symmetries, U(1)V × U(1)A, acting on the Dirac field. The reason why the transformation with γ5 is called axial
is that the spatial components of its Noether’s current form an axial vector, which does not change sign under
parity, as it can be checked by explicit computation.

Let’s add a mass term for the Dirac field:

L = iψ̄ 6 ∂ ψ −mψ̄ψ = iψ†Lσ̄
µ∂µ ψL + iψ†Rσ

µ∂µ ψR −m(ψ†LψR + ψ†RψL).

One can immediately realize that now the left-handed and right-handed Weyl spinors cannot be rotated indepen-
dently as in the massless case; however the transformation U(1)V is still a symmetry of the massive theory. This
is not the case for the axial transformation, since

ψ̄′ψ′ = ψ†e−iαγ
5

γ0eiαγ
5

ψ = ψ̄e2iαγ5

ψ.

The introduction of a mass term preserves the U(1)V while it explicitly breaks the invariance under U(1)A.

The invariance under the vectorial group has important physical applications. Extending the analysis to a Dirac
Lagrangian with two fermion fields, the up and down quarks,

L̃ =
∑
ij

iψ̄i(δij 6 ∂ −mij)ψj ,

one can notice that if the mass matrix mij is proportional to the identity, i.e. if the two quarks have the same

mass, then L̃ is invariant under the group U(2)V ≡ U(1)×SU(2). The U(1) factor is associated to barion number
conservation, while the SU(2) subgroup is the isospin. Since the mass degeneracy in Nature is only approximate,
the vectorial group is not an exact symmetry, implying the slight mass difference among barions in the same
isospin multiplet, like neutron and proton.

Exercise 2

Let’s first write the Dirac Lagrangian in its manifestly hermitian form

L =
i

2
ψ̄(∂µ −

←−
∂ µ)γµψ,

where the symbol
←−
∂ means that the derivative acts on what is on its left. Let’s consider now the transformation

properties of the Dirac field under the Lorentz group:

ψa(x) −→ ψ′a(x′) = (ΛD) ba ψb(x).
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From the definitions of ψ in terms of ψL and ψR, and of ΛD in terms of ΛR and ΛL, one has

ΛD = exp

[
− i

2
ωµνS

µν

]
,

where

Sµν ≡ i

4
[γµ, γν ].

The variation of the Dirac field at fixed coordinate is thus

∆ψ(x) ≡ ψ′(x)− ψ(x) ' ωµν
2

[−iSµν + (xµ∂ν − xν∂µ)]ψ(x) = ∆µν
ψ

ωµν
2
,

∆ψ̄(x) ≡ ψ̄′(x)− ψ̄(x) ' ψ̄(x)
[
iSµν + (

←−
∂ νxµ −

←−
∂ µxν)

] ωµν
2

= ∆µν

ψ̄

ωµν
2
.

The second of these relations has been derived from the first by hermitian-conjugating it, applying γ0 on the right,
and using γ0(Sµν)†γ0 = Sµν and (γ0)2 = 1. Of course, starting from the Lagrangian density and considering the
variation of ψ̄ one gets the same result.
Notice that the part containing derivatives is due to the variation of the point in which the field is evaluated (while
keeping fixed the label x), so it is simply due to the fact that the field is a function of space-time, as it happened
for the scalar field: this part is in fact common to all fields and when evaluated in its space components it gives
rise to the orbital part of the angular momentum. On the contrary, the contribution Sµν comes from ΛD and thus
depends on the representation of the Lorentz group the field belongs to: in particular it is zero for scalar fields, as
we have seen in Set8. This is the spin contribution to total angular momentum.
To give a quantitative meaning to this statement one can compute the Noether’s current associated to invariance
under Lorentz transformations. Using the usual definitions one has

Mρ
µν ≡

∂L
∂(∂ρψ)

∆ψ,µν + ∆ψ̄,µν

∂L
∂(∂ρψ̄)

− ερµνL = xµT
ρ
ν − xνT ρµ +

1

2
ψ̄{γρ, Sµν}ψ,

where Tµν is the energy-momentum tensor, namely

Tµν =
∂L

∂(∂µψ)
∂νψ + ∂νψ̄

∂L
∂(∂µψ̄)

− ηµνL

=
i

2
(ηµαηνβ − ηµνηαβ)ψ̄γα(∂β −

←−
∂ β)ψ,

and we have used xµ − x′µ ≡ εµαβωαβ/2 = (xαδ
µ
β − xβδµα)ωαβ/2.

The angular momentum is then

Jk ≡ 1

2
εijk

∫
d3x M0

ij =
1

2
εijk

∫
d3x

[
xiT

0
j − xjT 0

i +
1

2
ψ̄{γ0, Sij}ψ

]
≡
∫
d3x ψ†(t, ~x)(Lk + Σk/2)ψ(t, ~x),

where Lk = [~x ∧ (−i~∇)]k is the orbital part (obtained from the above definition of Tµν , integrating by parts),
while

Σk = εijkSij =

(
σk 0
0 σk

)
is the spin operator. To write last two equations we have used the explicit form of Sij and its hermiticity, which

implies γ0Sijγ
0 = γ0S†ijγ

0 = Sij .

Let’s now consider the action of the spin on a generic one-particle state in position space, ψ†α(t, ~x)|0〉 ≡ |x, α〉.
Defining

~S =

∫
d3x ψ†(t, ~x)

~Σ

2
ψ(t, ~x),

and recalling that the vacuum has zero spin, ~S|0〉 = 0, one has

~S2 |x, α〉 = [~S · [~S, ψ†α(t, ~x)]] |0〉.
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With the fermionic equal-time canonical (anti)commutation relations

{ψα(t, ~x), ψβ(t, ~y)} = {ψ†α(t, ~x), ψ†β(t, ~y)} = 0,

{ψα(t, ~x), ψ†β(t, ~y)} = δαβδ
3(~x− ~y),

one gets

[~S, ψ†α(t, ~x)] =

∫
d3y

~Σγβ

2
[ψ†γ(t, ~y)ψβ(t, ~y), ψ†α(t, ~x)] =

∫
d3y

~Σγβ

2
[−ψ†γψ†αψβ + ψ†γ(t, ~y)δαβδ

3(~x− ~y)− ψ†αψ†γψβ ]

= ψ†γ(t, ~x)
~Σγα

2
,

then

[~S · [~S, ψ†α(t, ~x)]] =
1

4
ψ†β(t, ~x)~Σβγ · ~Σγα =

ψ†β(t, ~x)

4

∑
k

(
σk 0
0 σk

)(
σk 0
0 σk

)βα
=

3

4
ψ†α(t, ~x).

Thus
~S2 |x, α〉 ≡ s(s+ 1) |x, α〉 =

3

4
|x, α〉 =⇒ s =

1

2
.

The the operator ψ† creates particles characterized by spin one half.

Exercise 3

In case the ψi are fermionic:

[ψ†i , OA] = Akj [ψ
†
i , ψ
†
kψj ] = Akj

({
ψ†i , ψ

†
k

}
ψj − ψ†k

{
ψ†i , ψj

})
= Akj

(
−δijψ†k

)
= −ψ†kAki,

[ψi, OA] = Akj [ψi, ψ
†
kψj ] = Akj

({
ψi, ψ

†
k

}
ψj − ψ†k {ψi, ψj}

)
= Akj (δikψj) = Aijψj .

[OA, OB ] =AijBkl

[
ψ†iψj , ψ

†
kψl

]
= AijBkl

(
ψ†i

[
ψj , ψ

†
kψl

]
+
[
ψ†i , ψ

†
kψl

]
ψj

)
=

AijBkl

(
ψ†i

{
ψj , ψ

†
k

}
ψl − ψ†iψ

†
k {ψj , ψl}+

{
ψ†i , ψ

†
k

}
ψlψj − ψ†k

{
ψ†i , ψl

}
ψj

)
=

AijBkl

(
ψ†i δjkψl − ψ

†
kδilψj

)
= ψ†i (AB −BA)ijψj .

In case they are bosonic:

[ψ†i , OA] = Akj [ψ
†
i , ψ
†
kψj ] = Akj

([
ψ†i , ψ

†
k

]
ψj +

[
ψ†i , ψj

]
ψ†k

)
= Akj

(
−δijψ†k

)
= −ψ†kAki,

[ψi, OA] = Akj [ψi, ψ
†
kψj ] = Akj

([
ψi, ψ

†
k

]
ψj + [ψi, ψj ]ψ

†
k

)
= Akj (δikψj) = Aijψj ,

[OA, OB ] =AijBkl

[
ψ†iψj , ψ

†
kψl

]
= AijBkl

(
ψ†i

[
ψj , ψ

†
kψl

]
+
[
ψ†i , ψ

†
kψl

]
ψj

)
=

AijBkl

(
ψ†i

[
ψj , ψ

†
k

]
ψl + ψ†iψ

†
k [ψj , ψl] +

[
ψ†i , ψ

†
k

]
ψlψj + ψ†k

[
ψ†i , ψl

]
ψj

)
=

AijBkl

(
ψ†i δjkψl − ψ

†
kδilψj

)
= ψ†i (AB −BA)ijψj .

The same logic applies in the case of the Hamiltonian. Indeed we can write H as

H =

∫
d3xd3y ψ†a(~x)Aab(~x, ~y)ψb(~y),

where
Aab(~x, ~y) = δ3(~x− ~y)

[
γ0 (−i~γ · ∇~y +m)

]
ab
.

This implies that

i
∂ψ(~x, t)

∂t
= [ψ(~x, t), H] =

[
γ0 (−i~γ · ∇+m)

]
ψ(~x, t), i

∂π(~x, t)

∂t
= [π(~x, t), H] = −π(~x, t)

[
γ0
(
i~γ ·
←−
∇ +m

)]
.

Multiplying these by γ0 and recallling π = iψ†, one easily gets Dirac equation.
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