
Quantum Field Theory

Set 13: solutions

Exercise 1

In order to solve the Dirac equation for a massive spinor (i6 ∂ −m)ψ(x) = 0 it’s convenient to go to momentum
space taking the Fourier transform of the field ψ(x):

ψ(x) =

∫
d4p

(2π)4
u(p)e−ipx,

where u(p) is a four component Dirac spinor. Hence the Dirac equation assumes the algebraic form:

( 6 p−m)u(p) = 0.

If u(p) represents a single particle with mass m and momentum pµ, one can consider solution in the rest frame, in
which the momentum assumes the simple form p̃µ = (m, 0, 0, 0). Then the Equation of motion reads:

( 6 p̃−m)u0 = (mγ0 −m)u0 =

(
−m m
m −m

)
u0 = 0,

and a simple solution is given by:

u0 =
√
m

(
ξ
ξ

)
for any arbitrary bispinor ξ. The coefficient

√
m is chosen for future convenience. Starting from this solution one

can obtain the general one applying a Lorentz boost to it. Indeed given a reference frame where the momentum
of the particle is pµ = (E, 0, 0, p3) = Λµν p̃

ν , one has:

ΛD(6 p̃−m)u0 = ΛD(6 p̃−m)Λ−1D ΛDu0 = (Λµν p̃
νγµ −m)u(p) = (6 p−m)u(p),

where we have defined the solution for a generic momentum p, u(p), as the Lorentz transformed of the solution
at rest: u(p) ≡ ΛDu0. In order to obtain the explicit solution we need therefore the explicit expression for ΛD,
namely the Dirac representation of the boost transforming p̃µ −→ pµ. Without loss of generality we have chosen
pµ in the third direction, so that Λµν is of the form:

Λµν =


cosh(η) 0 0 sinh(η)

0 1 0 0
0 0 1 0

sinh(η) 0 0 cosh(η)

 E = m cosh(η)
p3 = m sinh(η)

=⇒ tanh(η) =
p3

E
.

Moreover, recalling the definition of sinh(η) and cosh(η), one gets

cosh(η) =
eη + e−η

2
sinh(η) =

eη − e−η

2
=⇒ e±η =

E ± p3

m
=⇒ e±

η
2 =

√
E ± p3
m

.

A general Lorentz transformation on Dirac spinors has the structure:

ΛD =

(
e−

1
2 (iθ

i+ηi)σi 0

0 e−
1
2 (iθ

i−ηi)σi

)
.

The present case is in fact simpler since we are dealing with a pure boost, θi = 0, in the third direction only,
ηi = (0, 0, η). Therefore

ΛD =

(
e−ησ

3/2 0

0 e+ησ
3/2

)
=

(
cosh

(
η
2

)
12 − sinh

(
η
2

)
σ3 0

0 cosh
(
η
2

)
12 + sinh

(
η
2

)
σ3

)



Still, using the definition of cosh(η), sinh(η), and σ3 = diag(1,−1), one gets:

ΛDu0 =

 eη/2
(

1−σ3

2

)
+ e−η/2

(
1+σ3

2

)
0

0 eη/2
(

1+σ3

2

)
+ e−η/2

(
1−σ3

2

) ( √mξ√
mξ

)

=

 √
E + p3

(
1−σ3

2

)
+
√
E − p3

(
1+σ3

2

)
0

0
√
E + p3

(
1+σ3

2

)
+
√
E − p3

(
1−σ3

2

) ( ξ
ξ

)

=


√
E − p3 0 0 0

0
√
E + p3 0 0

0 0
√
E + p3 0

0 0 0
√
E − p3

( ξ
ξ

)

=


E − p3 0 0 0

0 E + p3 0 0
0 0 E + p3 0
0 0 0 E − p3


1
2 (

ξ
ξ

)
=

( √
E − p3σ3 0

0
√
E + p3σ3

)(
ξ
ξ

)
.

Notice that since the matrices involved are diagonal there are no problems in defining the square root of them.
One could extend the previous result for a general boost:

u(p) =

( √
E − piσi 0

0
√
E + piσi

)(
ξ
ξ

)
=

( √
pµσµ 0
0

√
pµσ̄µ

)(
ξ
ξ

)
.

One can easily verify that this expression is indeed a solution of the Dirac equation:

(6 p−m)u(p) =

(
−m pµσ

µ

pµσ̄
µ −m

)( √
pµσµ 0
0

√
pµσ̄µ

)(
ξ
ξ

)
=

( √
pνσν (−m+

√
pρσρ

√
pµσ̄µ) ξ√

pν σ̄ν (−m+
√
pρσ̄ρ

√
pµσµ) ξ

)
= 0,

where in the last equality we have used

√
pµσµ

√
pν σ̄ν =

√
pµσµpν σ̄ν =

√
pµpν

(σµσ̄ν + σν σ̄µ)

2
=
√
pµpνηµν =

√
p2 = m.

The expression for u(p) written in this way is compact and easy to recall but not practical for computations. We
now manipulate it in order to obtain a more manageable expression. First start from the simple configuration
pµ = (E, 0, 0, p3). In this case one has

√
p · σ ≡

√
pµσµ =

√
E − p3σ3 = α+ β σ3

(both sides have to be diagonal). The coefficients can be found by equating entry by entry the two sides of

previous equation, and are α = (
√
E − p3 +

√
E + p3 )/2 and β = (

√
E − p3 −

√
E + p3 )/2. To put them in a

more convenient form, one can square and simplify them using the mass-shell condition E2 = (p3)2 +m2, getting
α2 = (E +m)/2 and β2 = (E −m)/2. Since these equations are quadratic, there is still a sign uncertainty, which
can be solved by taking the non-relativistic (p3 → 0, E → m) and the ultra-relativistic (p3 → E, m/E → 0) limits
of both sides in the equation, yielding

√
p · σ =

√
E +m

2
−
√
E −m

2
σ3.

One can rewrite it in a more convenient form as

√
p · σ =

√
E +m

2
− p3σ3√

2(E +m)
.
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For generic momenta one thus finds

√
p · σ =

√
E +m

2
− piσi√

2(E +m)
,

√
p · σ̄ =

√
E +m

2
+

piσi√
2(E +m)

.

Finally

u(p) =


(√

E+m
2 − piσi√

2(E+m)

)
ξ(√

E+m
2 + piσi√

2(E+m)

)
ξ

 .

Exercise 2

The aim of this exercise is to work out a basis of 4 × 4 matrices acting on Dirac spinors which have definite
transformation properties under the Lorentz group in the following sense: call Γ such a matrix and consider
a basis B = {Γ1, . . .Γ16}; hence Γ can be decomposed in a linear combination: Γ =

∑
n enΓn, with complex

coefficients en. For a given Lorentz transformation Λµν one can take the Dirac representation ΛD and consider:

Λ†DΓΛD = Γ′ ≡
∑
n

e′mΓm.

We are looking for a basis such that the coefficients em and e′n are related by a matrix which is some representation
of Λµν (a sum if irreducible representation, actually).

Note. Saying that Γ has definite transformation properties under Lorentz has to be further specified. Actually,
the Γ’s are all numbers under the Lorentz group, since Lorentz transformations act on the Hilbert space of physical
states, while the Γ’s are matrices on a 4-dimensional complex space (the one in which Dirac indices live) which
is a different space: on the Hilbert space, the Dirac matrices are just numerical coefficients that stay unchanged
under any physical transformation. Nevertheless, given a Dirac spinor ψ, the object O = ψ̄Γψ transforms under
Lorentz into ψ̄Λ−1D ΓΛDψ, so it is useful to have a basis of Γ’s such that Λ−1D ΓΛD = Λ|repΓ, for Λ|rep some Lorentz
representation matrix, because in this way O can be used to build lagrangian densities involving Dirac fermions.
Notice that this is analogous to when one takes the object O′ = Ψ†iσ

a
ijΨj and performs an Isospin transformation

on the fields: the σ’s do not transform, since the Isospin transformation is again a transformation on the Hilbert
space of physical states, and the Pauli matrices are just numerical coefficients in that space. So in what follows,
when referring to Γ with definite transformation properties under the Lorentz group, it will always be understood
the reference to ψ̄Γψ.

The space of 4 × 4 matrices has complex dimension 16, meaning that its basis is formed by 16 elements each
independent with respect to complex linear combinations of the others. Clearly we can take the identity which is
a scalar under the transformation defined. Secondly one can consider the four Dirac matrices γµ, which one knows
transform as a four vector (see Set 12, exercise 1, for the explicit proof):

Λ−1D γµΛD = Λµνγ
ν .

Starting from last relation one can easily obtain other objects transforming according to irreducible representation
of the Lorentz group: γµν ≡ γ[µ γ ν] = 1

2! [γµ, γν ], γµνρ ≡ 1
3!γ

[µ γνγ ρ], γµνρσ ≡ 1
4!γ

[µ γνγργ σ] , where we have
used the notation [...] among the indices to mean their complete antisymmetrization. In order to extract the
transformation properties of these quantities one has to generalize the information that γµ is a Lorentz four
vector:

Λ−1D γµνΛD = Λ−1D
1

2
(γµγν − γνγµ)ΛD =

1

2
Λ−1D (γµΛDΛ−1D γν − γνΛDΛ−1D γµ)ΛD = ΛµρΛ

ν
σ γ

ρσ,

Λ−1D γµναΛD = ΛµρΛ
ν
σΛαβ γ

ρσβ ,

Λ−1D γµναδΛD = ΛµρΛ
ν
σΛαβΛδγ γ

ρσβγ .

Therefore these tensors transform respectively as antisymmetric tensors of rank r = 2, 3 and 4, respectively,
and each of them contains 4!

(4−r)!r! independent matrices (recall that these objects are Lorentz tensors since they

3



carry spacetime indices and each component is a 4× 4 matrix acting on Dirac indices). In the following table we
summarize all the matrices:

Basis element Trasformation property Components
1 Scalar 1
γµ Four vector 4
γµν Antisymmetric rank 2 6
γµνρ Antisymmetric rank 3 4
γµνρσ Antisymmetric rank 4 1

The tensors so defined are a total of 16 independent matrices, and therefore any matrix acting on Dirac indices
can be expressed as a linear combination of them with complex coefficients. This basis be re-expressed in a more
compact form introducing an additional 4× 4 matrix:

γ5 = iγ0γ1γ2γ3 = − i

4!
εµνρσγ

µγνγργσ,

γ5 =

(
−12 0

0 12

)
,

{
γ5, γµ

}
= 0

In writing γ5 in terms of the Levi-Civita tensor we have used the fact that every exchange of two different γ’s
implies a minus sign, and the fact that ε0123 = −ε0123 = −1 to determine the overall sign. Note that the definition
of this matrix involves the antisimmetrization of four gamma matrices, which is very similar to the rank 4 tensor
that we had before. One can indeed show the following relations:

γµνρσ = −iγ5εµνρσ,
γµνρ = −iγ5εµνρσγσ.

The former relation can be immediately proved considering that in four dimensions there is only one independent
completely antisymmetric tensor with four indices, namely the Levi-Civita tensor, so every object with those
characteristics has to be proportional to it, and the proportionality coefficient can be worked out considering
the 0123 component. The second relation can be worked out in components in the following way: γµνρσγσ =
γ0γ1γ2γ3εµνρσγσ = εµνρ3γ0γ1γ2 − εµνρ2γ0γ1γ3 + εµνρ1γ0γ2γ3 − εµνρ0γ1γ2γ3, so that

γ012σγσ = γ0γ1γ2, γ013σγσ = γ0γ1γ3,

γ023σγσ = γ0γ2γ3, γ123σγσ = γ1γ2γ3,

and it is 0 in all other cases. Likewise,

γ012 = γ0γ1γ2, γ013 = γ0γ1γ3,

γ023 = γ0γ2γ3, γ123 = γ1γ2γ3,

so γµνρσγσ = γµνρ, hence the relation we wanted.
Using these relations one can identify the 16 independent matrices in:

B =
{

1, γ5, γµ, γ5γµ, γµν
}
.

Now we know how to construct all the possible spinor bilinear in the Lagrangian, and they transformation properties
under Lorentz transformation.

Exercise 3

Massive spinor and anti-spinor are given by, respectively,

us(~p ) =

(√
p · σ 0
0

√
p · σ̄

)(
ξs

ξs

)
, vs(~p ) =

(√
p · σ 0
0 −

√
p · σ̄

)(
ξs

ξs

)
.

Given that:

γ0γµ =

(
σ̄µ 0
0 σµ

)
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we have:
ūr(~p )γµus(~p ) = v̄r(~p )γµvs(~p ) = (ξr)†

[√
p · σσ̄µ√p · σ +

√
p · σ̄σµ

√
p · σ̄

]
ξs

Let us calculate the first term: √
pµσµσ̄

0√p · σ =
√
p · σ1

√
p · σ = p · σ ,

√
p · σσ̄i√p · σ =−√p · σσi√p · σ = −1

2

(√
E +m− ~p · ~σ√

E +m

)
σi
(√

E +m− ~p · ~σ√
E +m

)
=− 1

2

(
(E +m)σi −

{
~p · ~σ, σi

}
+

(~p · ~σ)σi(~p · ~σ)

E +m

)
=

1

2

[
(E +m)σi − 2pi +

p2σi + 2pi(p · σ)

E +m

]
where we made use of the anti-commutation relation

{
σi, σj

}
= 2δij1. After calculating the second term in the

same way, the final result is

√
p · σσ̄0√p · σ +

√
p · σ̄σ0√p · σ̄ = p · σ̄ + p · σ̄ = 2p012 ,

√
p · σσ̄i√p · σ +

√
p · σ̄σi

√
p · σ̄ =

1

2
(2pi + 2pi)1 = 2pi12 ,

which implies
ūr(~p )γµus(~p ) = v̄r(~p )γµvs(~p ) = 2pµδrs .

Using (γ0)2 = 1, this results immediately implies that the scalar product of two spinors is not Lorentz invariant:

ur †(~p )us(~p ) = vr †(~p )vs(~p ) = 2p0δrs .

In order to define a Lorentz invariant product, we consider instead the scalar product between ur(~p ) (vr(~p )) and
ūr(~p ) (v̄r(~p )). To compute the latter, recall:

γ0 =

(
0 12

12 0

)
,

from which we find

γ0u
s(~p ) =

(
0

√
p · σ̄√

p · σ 0

)(
ξs

ξs

)
=

(√
p · σ̄ξs√
p · σξs

)
, γ0v

s(~p ) =

(
0 −

√
p · σ̄√

p · σ 0

)(
ξs

ξs

)
=

(
−
√
p · σ̄ξs√
p · σξs

)
.

It follows that

ūs(~p )ur(~p ) = −v̄s(~p )vr(~p ) = (ξs)†
[√
p · σ
√
p · σ̄ +

√
p · σ̄√p · σ

]
ξr = 2m(ξs)†ξr = 2mδrs ,

where we used the following equation proved in exercise 1:
√
p · σ̄√p · σ =

√
p · σ
√
p · σ̄ = m. Similarly, we find

ūs(~p )vr(~p ) = −v̄s(~p )ur(~p ) = (ξs)†
[√
p · σ
√
p · σ̄ −

√
p · σ̄√p · σ

]
ξr = 0 .

Notice also that from the definition of σµ and σ̄µ it follows that

us(−~p ) = γ0u
s(~p ) , vs(−~p ) = −γ0us(~p ) .

Then the previous result implies ur †(~p )vs(−~p ) = vr †(~p )us(−~p ) = 0.
Finally, we can prove the following relations∑

r=1,2

ur(~p )ūr(~p ) = 6 p+m,
∑
r=1,2

vr(~p )v̄r(~p ) = 6 p−m.

To this aim, we observe that ∑
s=1,2

ξsξ
†
s = 12 .

Then∑
r=1,2

ur(~p )ūr(~p ) =

(√
p · σ 0
0

√
p · σ̄

)(
12 12

12 12

)(
0

√
p · σ√

p · σ̄ 0

)
=

(√
p · σ √

p · σ√
p · σ̄

√
p · σ̄

)(
0

√
p · σ√

p · σ̄ 0

)
=

(√
p · σ
√
p · σ̄ √

p · σ√p · σ√
p · σ̄
√
p · σ̄

√
p · σ̄√p · σ

)
=

(
m p · σ
p · σ̄ m

)
= 6 p+m,
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where we used again
√
p · σ
√
p · σ̄ = m and the definition of gamma matrices

γµ =

(
0 σµ
σ̄µ 0

)
.

Similarly, we find∑
r=1,2

vr(~p )v̄r(~p ) =

(√
p · σ 0
0 −

√
p · σ̄

)(
12 12

12 12

)(
0

√
p · σ

−
√
p · σ̄ 0

)
=

( √
p · σ √

p · σ
−
√
p · σ̄ −

√
p · σ̄

)(
0

√
p · σ

−
√
p · σ̄ 0

)
=

(
−√p · σ

√
p · σ̄ √

p · σ√p · σ√
p · σ̄
√
p · σ̄ −

√
p · σ̄√p · σ

)
=

(
−m p · σ
p · σ̄ −m

)
= 6 p−m.
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