
Quantum Field Theory

Set 12: solutions

Exercise 1

• We have

Wµ =
1

2
εµνρσJνρPσ =

1

2
εµνρσ[Jνρ, Pσ] +

1

2
εµνρσPσJνρ =

1

2
εµνρσ[Jνρ, Pσ] +

1

2
εµνρσPνJρσ, (1)

where in the last equality we relabeled σ ↔ ν and used anti-symmetry of εµνρσ and Jρσ.

Now all we have to show is that the term involving the commutator is zero. It follows from the algebra (eq.
(3.191) in the lecture notes),

[Jνρ, Pσ] = i(ησρPν − ησνPρ), (2)

that
1

2
εµνρσ[Jνρ, Pσ] =

i

2
εµνρσ(ησρPν − ησνPρ) = 0. (3)

The first term is zero because ησρ is symmetric and its indices are contracted with εµνρσ which is anti-
symmetric. The second term is zero for the same reason.

• 1. It follows from the algebra (eq. (3.192) from the lectures notes) and anti-symmetry of the Levi-Civita
tensor that

WµPµ =
1

2
εµνρσJνρPσPµ =

1

4
εµνρσJνρ[Pσ, Pµ] = 0. (4)

2. We have

[Pµ,W ν ] =
1

2
εναρσ[Pµ, JαβPσ] =

1

2
εναρσ([Pµ, Jαβ ]Pσ + Jαβ [Pµ, Pσ]). (5)

Now we make use of the algebra, in particular [Pµ, Pσ] = 0 and eq. (2) to find

[Pµ,W ν ] =
1

2
εναρσ([Pµ, Jαρ]Pσ =

i

2
εναρσ(δµαPρ − δµρPα)Pσ = 0, (6)

due to antisymmetry of the Levi-Civita tensor.

3. We have

[Jµν ,W ρ] =
1

2
εραβσ[Jµν , JαβPσ] =

1

2
εραβσ([Jµν , Jαβ ]Pσ + Jαβ [Jµν , Pσ]). (7)

We again make use of the algebra,

[Jµν , Jαβ ] = i(δναJ
µ
β − δ

µ
αJ

ν
β + δµβJ

ν
α − δνβJµα), [Jµν , Pσ] = i(δνσP

µ − δµσP ν), (8)

to get

[Jµν ,W ρ] =
i

2
(ερνβσJµβPσ + ερανσJ µ

α Pσ + εραβνJαβPµ)− (µ↔ ν). (9)

We now factor out JαβPσ to have

[Jµν ,W ρ] =
i

2
JαβPσ(ηµαερνβσ + ηµβερανσ + ηµσεραβν)− (µ↔ ν). (10)

We now make use of the identity1

ηµνεραβσ = ηµρεναβσ + ηµαερνβσ + ηµβερανσ + ηµσεραβν (12)

1This identity follows from expanding the determinant relation

det(A)εραβσ = Aρ
ρ′A

α
α′A

β
β′A

σ
σ′ε

ρ′α′β′σ′
(11)

to linear order in ωρ
ρ′ , where Aρ

ρ′ = δρ
ρ′ +ω

ρ
ρ′ +O(ω2). The left-hand-side becomes proportional to the trace trω = ηµνωµν , matching

to the left-hand-side of (12). Correpondingly, the right-hand-sides will match and given that ωµν is arbitrary, the identity (12) will
hold.



to have

[Jµν ,W ρ] =
i

2
JαβPσ(ηµνεραβσ − ηµρεναβσ)− (µ↔ ν) = (13)

= − i
2
JαβPση

µρεναβσ +
i

2
JαβPση

νρεµαβσ = i(ηνρWµ − ηµρW ν). (14)

Note that replacing W ρ with the momentum P ρ in the above yields the correct commutation relation
between Jαβ and P ρ.This result is a consequence of the fact that W ρ transforms as a 4-vector under
Lorentz transformations (just like P ρ).

4. We have

[Wµ,W ν ] =
1

2
εναρσ[Wµ, JαβPσ] =

1

2
εναρσ([Wµ, Jαβ ]Pσ + Jαβ [Wµ, Pσ]). (15)

We now make use of the results found in points 2 and 3. We find

[Wµ,W ν ] =
i

2
εναρσ(δµαWρ − δµρWα)Pσ = iεναρσWρPσ. (16)

• To show that W 2 is a Casimir we have to show that it commutes with the Poincare generators Pµ and Jµν .
We have

[W 2, Pµ] = Wα[Wα, Pµ] + [Wα, Pµ]Wα = 0 (17)

due to the result derived in point 2.

We also have

[W 2, Jµν ] = Wα[Wα, Jµν ] + [Wα, Jµν ]Wα = i[Wµ,W ν ] + i[W ν ,Wµ] = 0, (18)

where we made use of the result derived in point 3.

Exercise 2

• At first, let us simply write the infinitesimal transformation for a Lorentz vector in terms of θk and ηk.

v′µ = Λµνv
ν ' (δµν + ωµν)vν = (δµν + gναω

µα)vν

v′0 = v0 + gναω
0αvν = v0 + gνiω

0ivν = v0 − δjiω0ivj = v0 + ηivi (19)

v′i =vi + gναω
iαvν = vi + gνjω

ijvν + gν0ω
i0vν = vi + gkjω

ijvk + g00ω
i0v0

=vi + gkjε
ijlθlvk + g00η

iv0 = vi − εijlθlvj + ηiv0
(20)

where gµν is the Minkowski metric.

• Now, we want to show:
ΛL(θ, η)vµσµΛ†L(θ, η) = Λµν(θ, η)vνσµ (21)

Let us call v ≡ vµσµ. Expanding the left hand side to linear order:

v′µσµ = exp[−(~η + i~θ) · ~σ/2] v exp[−(~η − i~θ) · ~σ/2] ' [1− (~η + i~θ) · ~σ/2] v [1− (~η − i~θ) · ~σ/2]

=v − ηi

2
{σi, v} − iθi

2
[σi, v] = v − ηi

2
(2v0σi − 2viσ0) +

iθi

2
(2iεijkvjσk)

=v + ηiviσ0 + (+εijlθlvj + ηiv0)σi.

which, by equating the components of σµ on both sides of the equation, corresponds exactly to the transfor-
mations (19), (20).

• Take the complex conjugate of equation (21) and sandwich it between ε−1 and ε. The right-hand side
becomes:

Λµνv
νε−1σ∗µε = Λµνv

ν σ̄µ

where we used one of the properties given in the text. The left-hand side becomes:

vµε−1Λ∗Lσ
∗
µΛTLε = vµε−1Λ∗Lε ε

−1σ∗µε ε
−1ΛTLε = vµΛRσ̄µΛ†R

because ε−1Λ∗Lε = ΛR, which also implies ε−1ΛTLε = Λ†R. Therefore, we proved the equation outlined in the
text.
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• The last point derives from algebraic manipulations, given the last two point proven in the exercise.

The importance of this exercise lies in the fact that now we can construct spinor bilinears involving Weyl fermions
and Dirac fermions, which can be used to write down interaction terms in the Lagrangian, for instance:

Aµψ†Lσ̄µψL, Aµψ†RσµψR

This is the way the Weyl spinors are coupled to the electromagnetic field.

Exercise 3

• Recalling the definition of σµ = (1, σi) and σ̄µ = (1, −σi), one can easily check:

σµσ̄ν + σν σ̄µ =

 µ = 0, ν = 0 σ0σ̄0 + σ0σ̄0 = 2,
µ = 0, ν = i σ0σ̄i + σiσ̄0 = −σi + σi = 0,
µ = i, ν = j σiσ̄j + σj σ̄i = −σiσj − σjσi = −{σi, σj} = −2δij .

In compact notation:
σµσ̄ν + σν σ̄µ = σ̄µσν + σ̄νσµ = 2ηµν

Therefore, given the definition of the Dirac matrices, we can deduce the anticommutation relation:(
0 σµ

σ̄µ 0

)(
0 σν

σ̄ν 0

)
+ (µ↔ ν) =

(
σµσ̄ν 0

0 σ̄µσν

)
+ (µ↔ ν) = 2gµν1.

• Let us consider the second term in the right hand side of the equation:

{γµ, γ5} = iγµγ0γ1γ2γ3 + iγ0γ1γ2γ3γµ.

and let us bring γµ on the left of all the other matrices γν , ν = 0, 1, 2, 3. When µ 6= ν, the relation
{γµ, γν} = 2gµν gives γνγµ = −γµγν , while when µ = ν obviously γνγµ = γµγν . Therefore {γµ, γ5} = 0.

• The only non-trivial point of the question is to show that (γ5)2 = 1. This can be worked out in a way similar
to the one used in the previous point.
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