
Quantum Field Theory

Set 10: solutions

Exercise 1

Since ϕ is a real field we have ϕ(x, t) = ϕ(x, t)∗. Using this equality in the inverse Fourier transform

ϕ(k, t) =

∫
d3xe−ikxϕ(x, t)

we find

ϕ(k, t)∗ =

∫
d3xeikxϕ(x, t)∗ =

∫
d3xe−i(−k)xϕ(x, t) = ϕ(−k, t).

The same reasoning can be used for π(k, t). Now we plug the Fourier transform of ϕ(x, t) in the formula for the
Hamiltonian. Consider the first term∫

d3xπ(x)2 =

∫
d3x

∫
d3k

(2π)3

∫
d3q

(2π)3
eix(k+q)π(k)π(q).

We can now integrate in x to obtain a delta function that allows us to also integrate in q∫
d3xπ(x)2 =

∫
d3k

(2π)3

∫
d3q

(2π)3
(2π)3δ(k + q)π(k)π(q) =

∫
d3k

(2π)3
π(k)π(−k) =

∫
d3k

(2π)3
|π(k)|2,

where in the last equality we have used the identity just proved in the previous point. The same calculation can
be used for the other two terms. The only small difference comes from the term with the gradient for which we
have ∫

d3x(∇ϕ(x))2 =

∫
d3x

∫
d3k

(2π)3

∫
d3q

(2π)3
eix(k+q)(−(k · q))ϕ(k)ϕ(q) =

∫
d3k

(2π)3
k2|ϕ(k)|2.

In the end we find

H =

∫
d3k

(2π)3

[
1

2
|π(k, t)|2 + 1

2
(k2 +m2)|ϕ(k, t)|2

]
.

Exercise 2

The first commutator is

[H, a(p⃗)] =

∫
d3k

(2π)3
ω(k⃗)

[
a†(k⃗)a(k⃗), a(p⃗)

]
=

∫
d3k

(2π)3
ω(k⃗)

(
a†(k⃗)

[
a(k⃗), a(p⃗)

]
+
[
a†(k⃗), a(p⃗)

]
a(k⃗)

)
=

∫
d3k

(2π)3
ω(k⃗)

(
0− (2π)3δ3(p⃗− k⃗)a(k⃗)

)
= −ω(p⃗)a(p⃗).

Analogously,

[
H, a†(p⃗)

]
=

∫
d3k

(2π)3
ω(k⃗)

[
a†(k⃗)a(k⃗), a†(p⃗)

]
=

∫
d3k

(2π)3
ω(k⃗)

(
a†(k⃗)

[
a(k⃗), a†(p⃗)

]
+
[
a†(k⃗), a†(p⃗)

]
a(k⃗)

)
=

∫
d3k

(2π)3
ω(k⃗)

(
a†(k⃗)(2π)3δ3(p⃗− k⃗) + 0

)
= +ω(p⃗)a†(p⃗).



Exercise 3

We want to show the invariance under Lorentz transformations of the measure over momentum space d3k
(2π)32k0

,

where k0 ≡ ω(k⃗) =

√
|⃗k|2 +m2 is the energy associated to a given particle of mass m. There are two ways to

achieve the result: the first consists in checking explicitly the invariance performing a Lorentz transformation on
momenta; however we first prove it performing a manipulation. The measure can be rewritten as

d3k

(2π)32k0
=

d3k

(2π)3
dk0 δ(k

2 −m2)θ(k0) =
d4k

(2π)3
δ(k2 −m2)θ(k0). (1)

In order to convince oneself that this is true, one can consider a test function f of momenta and integrate it over
k0:∫

d3k

(2π)3
dk0δ(k

2
0−|⃗k|2−m2)θ(k0)f(k⃗, k0) =

∫
d3k

(2π)3
dk0

δ(k0 +

√
|⃗k|2 +m2)

2|k0|
+

δ(k0 −
√

|⃗k|2 +m2)

2|k0|

 θ(k0)f(k⃗, k0),

where we have used the well known relation for the δ function: given a function g(x) which vanishes in the points
{x1, ..., xn}, then

δ(g(x)) =

n∑
i=1

δ(x− xi)
1

|g′(xi)|
.

In the present case the equation (k0)
2 − |⃗k|2 −m2 = 0 admits two opposite solutions, hence the two terms in the

parenthesis, but the theta function gets rid of the second one since in that case k0 < 0. Finally, integrating on k0
one gets the initial measure:∫

d3k

(2π)3
dk0

δ(k0 −
√
|⃗k|2 +m2)

2|k0|
θ(k0)f(k⃗, k0) =

∫
d3k

(2π)32

√
|⃗k|2 +m2

f(k⃗,

√
|⃗k|2 +m2).

Notice that the integrated function depends only on k⃗ (and the measure we are considering is defined on three-

momenta). We have formally extended it to be a function of k⃗, k0 but this is only a trick because the δ function
forces the variables to be related by the mass shell condition k2 = m2.
The form of the measure we got allows us to show immediately the invariance under a Lorentz transformations.

• d4k is invariant since the jacobian determinant of the change of variables is 1.

• δ(k2 −m2) is a function of the scalar k2 = kµk
µ and therefore it’s itself invariant.

• The theta function is not a priori invariant under Lorentz transformations: it is so only if the sign of k′0 is
the same of that of k0. Lorentz transformations in general don’t preserve the sign of the 0-component of a
four vector: for example if vµ = (1, 0, 0, 2), then one can easily find a boost in the third direction that makes
v′0 < 0:

v′0 = γv0 − βγv3 = (1− 2β)γ =⇒ β ≥ 1

2
.

However one has to recall that the mass-shell condition k0 =

√
|⃗k|2 +m2 makes kµ a timelike fourvector (a

fourvector in which the 0-component is larger than the modulus of its spatial threevector), that is to say a
vector which lies inside the future lightcone centered in the origin. Transformations of the orthochronous
Lorentz group, defined by the condition Λ0

0 > 0 (those non containing the time reversal) send the future
lightcone in itself and therefore if the four vector kµ have positive 0-component, the same will be for k′µ.

One can prove this explicitly. The transformed 0-component of kµ is k′0 = Λ0
0k

0 +
∑

i Λ
i
0k

i, with

k0 ≥
√∑

i(k
i)2, due to the mass-shell condition. The defining relation ηµνΛ

µ
ρΛ

ν
σ = ηρσ implies Λ0

0 >√∑
i(Λ

i
0)

2. Moreover, since
∑

i Λ
i
0k

i ≥ −
√∑

i(k
i)2
√∑

i(Λ
i
0)

2, then:

(k0)′ ≥ Λ0
0k

0 −
√∑

i

(ki)2
√∑

i

(Λi
0)

2 ≥

Λ0
0 −

√∑
i

(Λi
0)

2

 k0 > 0

implying that the sign of k′0 is the same as the one of k0.
Therefore the theta function will be left invariant in the distribution (1).
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One can also check it explicitly performing Lorentz transformations: clearly the measure d3k
(2π)32k0

is invariant

under space rotations since d3k is so and k0 is a scalar under SO(3). Therefore only pure boosts are left to check.
Consider then a boost in the direction n⃗ with rapidity η (recall that the rapidity is defined as η = tanh−1(β)): we

decompose the spatial momentum k⃗ in its longitudinal (i.e. along n⃗) and transverse (i.e. orthogonal to n⃗) parts:

k⃗ = k⃗T + k⃗L. Then the transformed quantities are:

k′0 = k0 cosh (η) + |⃗kL| sinh (η),
k⃗′L = k0n⃗ sinh (η) + k⃗L cosh (η),

k⃗′T = k⃗T .

Note that the direction of k⃗L is fixed to be parallel to n⃗, therefore one can remove the symbol of vector and
consider only the modulus kL. One can as well decompose the differential d3k −→ d2kT dkL; therefore the
measure transforms as:

d2k′T = d2kT ,

dk′L =
∂k′L
∂kL

dkL =
∂

∂kL
(k0 sinh (η) + kL cosh (η))dkL =

∂

∂kL
(

√
k2L + |⃗kT |2 +m2 sinh (η) + kL cosh (η))dkL

=

 kL√
k2L + |⃗kT |2 +m2

sinh (η) + cosh (η)

 dkL =
1

k0
(kL sinh η + k0 cosh η) dkL =

k′0
k0

dkL.

At the end the ratio d3k
(2π)32k0

is invariant also under Lorentz boosts.

Finally one can consider the distribution d3kδ3(k⃗). The fastest way to see that it is invariant is to see it as the
result of an integration over k0:

d3kδ3(k⃗) =

∫
dk0d3k δ4(k) =

∫
d4k δ4(k) (2)

The expression on the right-hand side is Lorentz invariant because d4k′ = |J(Λ)|d4k and δ4(k′) = δ4(k)|J(Λ)|−1,
where J(Λ) is the determinant of the Jacobian of the Lorentz transformation.

Finally, the distribution (2π)3k0δ3(k⃗) is Lorentz-invariant because it’s obtained by dividing the two invariant

distributions d3kδ3(k⃗) and d3k
(2π)3k0 .

Exercise 4

Let’s consider the two lines Σ1 = {(t, x) : t = 0} and Σ2 = {(t, x) : t′ = 0 =⇒ t = βx}. We can integrate the
equation for the conservation of the current on the 2D section of the plane V between Σ1 and Σ2 as shown in Fig.
1.

We can write this integral in two different ways depending on whether we integrate first on t or on x:

∫∫
V

=

∫ ∞

−∞
dt

∫ ∞

t/β

dx =

∫ ∞

−∞
dx

∫ βx

0

dt

We will use both these forms when computing our result to eliminate the derivatives of the components of the
current. We have

0 =

∫∫
V

[
∂tJ

0(t, x) + ∂xJ
1(t, x)

]
=

∫ ∞

−∞
dt

∫ ∞

t/β

dx ∂xJ
1(t, x) +

∫ ∞

−∞
dx

∫ βx

0

dt ∂tJ
0(t, x)

= −
∫ ∞

−∞
dt J1(t, t/β) +

∫ ∞

−∞
dx
[
J0(βx, x)− J0(0, x)

]
,
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Σ1

Σ2

x

t

Figure 1:

where we have used the fact that the current vanishes for x → ∞. The integral of the last term gives us the charge
Q. We now want to prove that the sum of the other two is equal to Q′. First we change the integration variable
of the first integral to x using t = βx.

0 =

∫ ∞

−∞
dx
[
J0(βx, x)− βJ1(βx, x)

]
−Q.

Then we change the variable again to x′ = γ(x− βt) = x
γ (we used t = βx) to find

0 =

∫ ∞

−∞
dx

γ

γ

[
J0(t, x)− βJ1(t, x)

]
−Q =

∫ ∞

−∞
dx′ J ′0(t′ = 0, x′)−Q = Q′ −Q =⇒ Q = Q′.

Exercise 5

Consider the following complex scalar field doublet:

Φ =

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
, ϕi ∈ R.

Let us write the most general Lagrangian with terms of dimension d ≤ 4 which is invariant under Φ → UΦ, where
U ∈ SU(2). The result is the Lagrangian given in the text:

L = ∂µΦ†∂µΦ−m2Φ†Φ− λ(Φ†Φ)2. (3)

Invariance follows from Φ†Φ → Φ†(U†U)Φ = Φ†Φ since U†U = 1.
To see whether eq. (3) corresponds to a reasonable theory, let us compute the Hamiltonian density:

H = ∂0Φ
†∂0Φ+ ∂iΦ

†∂iΦ+m2(Φ†Φ) + λ(Φ†Φ)2. (4)

For a theory to be well defined, we need the Hamiltonian to be bounded from below. Indeed when couplings
to ordinary ‘healthy’ matter are taken into account the system is unstable: with zero net energy one can excite
both sectors, the positive energy one and the negative energy one, without bound. In a quantum system this
translates into an instability of the vacuum. The decay probability of the vacuum to a state involving negative
energy excitations would be infinite, since the phase space is, and consequently no Lorentz invariant stable vacuum
could exist. Looking at the Hamiltonian (4), the kinetic term is always positive and we can focus to constant field
configurations. The potential is instead unbounded for λ < 0 when (Φ†Φ) = const. → ∞, hence we need:

λ ≥ 0.

Even if we obtained (3) by demanding SU(2) invariance (and restricting to d ≤ 4 terms), the resulting Lagrangian
is invariant under a bigger symmetry group. First it is simple to check that U(1) phase transformations Φ → eiαΦ

4



are a symmetry, hence (3) is invariant at least under U(1) × SU(2) = U(2). In fact the symmetry group is even
bigger. To see this let us write Φ†Φ in terms of ϕi:

Φ†Φ = ϕ2
1 + ϕ2

2 + ϕ2
3 + ϕ4

4 =

4∑
i=1

ϕ2
i .

Similarly we have

∂µΦ
†∂µΦ =

4∑
i=1

∂µϕi∂
µϕi.

We then can conclude that (3) is invariant under the group O(4), under which ϕi →
∑4

j=1 Oijϕj , O ∈ O(4).
Indeed

4∑
i=1

ϕ2
i →

4∑
i=1

4∑
j=1

4∑
k=1

(Oijϕj)(Oikϕk) =

4∑
j=1

4∑
k=1

ϕj (O
TO)jk︸ ︷︷ ︸
=δjk

ϕk =

4∑
j=1

ϕ2
j .

Invariance of the kinetic term follows in the same way.

Let us now add higher dimensional terms to (3) which respect the U(2) symmetry. First it is easy to check that
there are no dimension five terms which are both Lorentz and U(2) invariant. At dimension 6 we have only one
possibility with no derivatives

O1 = (Φ†Φ)3.

At dimension six we can also write terms with two derivatives and four fields. Then we find

O2 = (Φ†Φ)(∂µΦ
†∂µΦ),

O3 = (Φ†∂µΦ)(Φ
†∂µΦ) + c.c. = (Φ†∂µΦ)(Φ

†∂µΦ) + (∂µΦ
†Φ)(∂µΦ†Φ),

O4 = i
[
(Φ†∂µΦ)(Φ

†∂µΦ)− c.c.
]
= i(Φ†∂µΦ)(Φ

†∂µΦ)− i(∂µΦ
†Φ)(∂µΦ†Φ),

O5 = (∂µΦ
†Φ)(Φ†∂µΦ).

Notice that (Φ†∂µΦ)
∗ = (∂µΦ

†Φ). Then these are found just taking all possible combinations of four fields where
derivatives act on different fields and requiring reality. Terms where two derivatives act on the same field can be
obtained from these adding a total derivative, hence we do not need to include them. For instance:

(Φ†Φ)(Φ†∂2Φ) + (Φ†Φ)(∂2Φ†Φ) = −2O2 −O3 − 2O5 + ∂µ
[
(Φ†Φ)(Φ†∂µΦ) + c.c.

]
.

We neglect terms with four derivatives.
Now we can add to (3) these terms. Since [L] = 4, the coupling in front the d = 6 terms must have dimension of
an inverse mass square. Hence the modification of (3) induced by the addiction of these can always be written as

L → L+ δL = L+
1

M2

5∑
i=1

λiOi, (5)

where the λi are dimensionless and M is a mass.
By construction (5) is still U(2) invariant. Without doing further computations we can also easily see that O1 and
O2 are O(4) invariant, since they are built with the same building blocks present in (3). However it is possible to
see that O3, O4, and O5 are not O(4) invariant. Consider indeed

(Φ†∂µΦ) = ϕ1∂µϕ1 + iϕ1∂µϕ2 − iϕ2∂µϕ1 + ϕ2∂µϕ2 + ϕ3∂µϕ3 + iϕ3∂µϕ4 − iϕ4∂µϕ3 + ϕ4∂µϕ4

=

4∑
i=1

ϕi∂µϕi + i

2∑
i,j=1

ϵijϕi∂µϕj + i

4∑
i,j=3

ϵijϕi∂µϕj .

Plugging this into the explicit expression of O5, for instance, we find

O5 =

(
4∑

i=1

ϕi∂µϕi

)2

+

 2∑
i,j=1

ϵijϕi∂µϕj +

4∑
i,j=3

ϵijϕi∂µϕj

2

.

The second term in the r.h.s. is not O(4) invariant. We conclude that generically the modified Lagrangian (5) is
U(2) but not O(4) invariant.
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