Quantum Field Theory

Set 13

Exercise 1: Solution of Dirac equation

Given the solution of the Dirac equation $(\tilde{p}-m)u_0=0$ in the rest frame of the fermion, $\tilde{p}^{\mu}=(m,0,0,0)$,

$$u_0 = \sqrt{m} \left(\begin{array}{c} \xi \\ \xi \end{array} \right)$$

• Show that the boosted spinor $u(p) = \Lambda_D u_0$ is a solution of the Dirac equation in a generic frame $p^{\mu} = (E, p^1, p^2, p^3), p_{\mu} p^{\mu} = m^2$:

$$(\not p-m)u(p)=0,$$

where Λ_D is the representation of the Lorentz transformation Λ^{μ}_{ν} that connects the rest frame with the generic frame: $p^{\mu} = \Lambda^{\mu}_{\nu} \tilde{p}^{\nu}$.

• Start from the simple case $p^{\mu}=(E,0,0,p^3)$, write the explicit form of Λ^{μ}_{ν} in terms of $\cosh(\eta)$ and $\sinh(\eta)$ and derive:

$$e^{\pm \eta} = \frac{E \pm p^3}{m}.\tag{1}$$

 \bullet Starting from the general representation of a Lorentz transformation in the Dirac representation

$$\Lambda_D = \left(\begin{array}{cc} \Lambda_L & 0 \\ 0 & \Lambda_R \end{array} \right) = \left(\begin{array}{cc} e^{-\frac{1}{2}(i\theta^i + \eta^i)\sigma^i} & 0 \\ 0 & e^{-\frac{1}{2}(i\theta^i - \eta^i)\sigma^i} \end{array} \right),$$

show that

$$\Lambda_D = \begin{pmatrix} \cosh\left(\frac{\eta}{2}\right) 1_2 - \sinh\left(\frac{\eta}{2}\right) \sigma^3 & 0 \\ 0 & \cosh\left(\frac{\eta}{2}\right) 1_2 + \sinh\left(\frac{\eta}{2}\right) \sigma^3 \end{pmatrix}.$$

• Substitute the expression (1) for η and show that

$$u(p) = \left(\begin{array}{cc} \sqrt{E-p^3\sigma^3} & 0 \\ 0 & \sqrt{E+p^3\sigma^3} \end{array} \right) \frac{u_0}{\sqrt{m}}$$

• Starting form $p^{\mu} = (E, 0, 0, p^3)$ and then generalizing to arbitrary spatial momenta, show that u(p) can be written in the more convenient form:

$$u(p) = \left(\begin{array}{c} \left(\left(\sqrt{E+m} \right) \mathbb{1}_2 - \frac{p^i \sigma^i}{\sqrt{E+m}} \right) \frac{\xi}{\sqrt{2}} \\ \left(\left(\sqrt{E+m} \right) \mathbb{1}_2 + \frac{p^i \sigma^i}{\sqrt{E+m}} \right) \frac{\xi}{\sqrt{2}} \end{array} \right).$$

Exercise 2: Basis of 4×4 matrices

Show that the following set of matrices:

$$\left\{\mathbb{1},\ \gamma_5,\ \gamma^\mu,\ \gamma^\mu\gamma_5,\ \gamma^{\mu\nu}\equiv\frac{1}{2}[\gamma^\mu,\gamma^\nu]\ \right\}$$

is a basis for the space of 4×4 complex matrices, and in addition that they have definite transformation properties under the Lorentz group in the following sense: for a given Lorentz transformation Λ^{μ}_{ν} one can take the Dirac representation Λ_{D} and consider

$$\Lambda_D^{-1}\Gamma\Lambda_D=\Gamma',$$

where Γ is one of the element of the above basis; then Γ and Γ' are related by a Lorentz transformation in the proper representation (for example: if $\Gamma \equiv \gamma^{\mu}$ then $\Gamma' \equiv \Lambda^{\mu}_{\ \nu} \gamma^{\nu}$, and so on).

Exercise 3: matrix elements

Consider the positive and negative energy solutions u(p) and v(p) of the Dirac equation, given by

$$u^s(\vec{p}\,) = \left(\begin{array}{c} \sqrt{p \cdot \sigma} \xi_s \\ \sqrt{p \cdot \overline{\sigma}} \xi_s \end{array} \right) \,, \qquad v^s(\vec{p}\,) = \left(\begin{array}{c} \sqrt{p \cdot \sigma} \xi_s \\ -\sqrt{p \cdot \overline{\sigma}} \xi_s \end{array} \right) \,,$$

where $p^{\mu}=(\sqrt{\vec{p}^2+m^2},\vec{p}),\,\sigma^{\mu}=(\mathbbm{1}_2,\vec{\sigma}),\,\bar{\sigma}^{\mu}=(\mathbbm{1}_2,-\vec{\sigma})$ and s=1,2 corresponds to the different polarizations:

$$\xi^1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \xi^2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

• Show that

$$\bar{u}^r(\vec{p})\gamma^{\mu}u^s(\vec{p}) = \bar{v}^r(\vec{p})\gamma^{\mu}v^s(\vec{p}) = 2p^{\mu}\delta^{rs}.$$

Conclude that the scalar products $u^{r\dagger}(\vec{p})u^{s}(\vec{p})$ and $v^{r\dagger}(\vec{p})v^{s}(\vec{p})$ are not Lorentz invariant.

• Prove that

$$\bar{u}^r(\vec{p})u^s(\vec{p}) = -\bar{v}^r(\vec{p})v^s(\vec{p}) = 2m\delta^{rs}, \quad \bar{u}^r(\vec{p})v^s(\vec{p}) = \bar{v}^r(\vec{p})u^s(\vec{p}) = 0.$$

Show that the last equation is equivalent to $u^{r\dagger}(\vec{p})v^{s}(-\vec{p}) = v^{r\dagger}(\vec{p})u^{s}(-\vec{p}) = 0$.

• Finally, prove the relations

$$\sum_{r=1,2} u^r(\vec{p}\,) \bar{u}^r(\vec{p}\,) = \not\!p + m\,, \qquad \sum_{r=1,2} v^r(\vec{p}\,) \bar{v}^r(\vec{p}\,) = \not\!p - m\,.$$