Quantum Field Theory

Set 12

Exercise 1: The Pauli–Lubanski (pseudo)vector

The Poincare group has two casimirs, P^2 and W^2 , where P^{μ} and W^{μ} are respectively the momentum and the Pauli-Lubanski vector

$$W^{\mu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} J_{\nu\rho} P_{\sigma} .$$

• Show that this definition is equivalent to

$$W^{\mu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} P_{\nu} J_{\rho\sigma} \,.$$

- Calculate and express the result of the following commutators in terms of the Pauli-Lubanski vector
 - 1. $P_{\mu}W^{\mu}$,
 - 2. $[P^{\mu}, W^{\nu}],$
 - 3. $[J^{\mu\nu}, W^{\rho}]$ (Hint: Use the identity $\eta^{\mu\nu}\epsilon^{\rho\alpha\beta\sigma} = \eta^{\mu\rho}\epsilon^{\nu\alpha\beta\sigma} + \eta^{\mu\alpha}\epsilon^{\rho\nu\beta\sigma} + \eta^{\mu\beta}\epsilon^{\rho\alpha\nu\sigma} + \eta^{\mu\sigma}\epsilon^{\rho\alpha\beta\nu}$),
 - 4. $[W^{\mu}, W^{\nu}].$
- Show that W^2 is a Casimir of the Poincare group.

Exercise 2: Vector spinor bilinears

Consider a Lorentz transformation:

$$\Lambda^{\mu}{}_{\nu} = e^{\omega^{\mu}{}_{\nu}}, \quad \omega_{\mu\nu} = -\omega_{\nu\mu}$$

where the boost and rotation parameter η^k , θ^k are defined as:

$$\omega^{ij} = \epsilon^{ijk} \theta^k, \quad \omega^{i0} = \eta^i$$

- Write explicitly the infinitesimal transformation for the components v^0 , v^i of a Lorentz vector v^{μ} in terms of θ^k , η^k
- The (1/2,0), (0,1/2) representations of the Lorentz group are:

$$\Lambda_L(\vec{\eta}, \vec{\theta}) = e^{-\frac{1}{2}(\vec{\eta} + i\vec{\theta})\cdot\vec{\sigma}}$$

$$\Lambda_R(\vec{\eta}, \vec{\theta}) = e^{-\frac{1}{2}(-\vec{\eta} + i\vec{\theta})\cdot\vec{\sigma}}$$

Consider the following action on a generic 2×2 hermitian matrix:

$$v^{\prime\mu}\sigma_{\mu} = \Lambda_L(\vec{\eta}, \vec{\theta})v^{\mu}\sigma_{\mu}\Lambda_L^{\dagger}(\vec{\eta}, \vec{\theta})$$

Prove at the infinitesimal level that this defines a Lorentz transformation on v^{μ} with parameters η^{k} , θ^{k} , where $\sigma_{\mu} \equiv (\mathbb{1}, -\vec{\sigma})$.

• Starting from the previous result show that also:

$$v^{\prime\mu}\bar{\sigma}_{\mu} = \Lambda_{R}(\vec{\eta}, \vec{\theta})v^{\mu}\bar{\sigma}_{\mu}\Lambda_{R}^{\dagger}(\vec{\eta}, \vec{\theta})$$

defines the same Lorentz transformation on v^{μ} , where $\bar{\sigma}_{\mu} \equiv (\mathbb{1}, \vec{\sigma})$. You may make use of the following properties of the $\epsilon = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ matrix:

$$\epsilon^T = \epsilon^{-1}, \quad \epsilon^{-1} \sigma^i \epsilon = -(\sigma^i)^*, \quad \Lambda_R = \epsilon^{-1} \Lambda_L^* \epsilon$$

• Repeat for:

$$v^{\prime\mu}\gamma_{\mu} = \Lambda_D v^{\mu}\gamma_{\mu}\Lambda_D^{-1}.$$

where Λ_D are Lorentz representation matrices acting on Dirac spinors:

$$\Lambda_D = \begin{pmatrix} \Lambda_L & 0 \\ 0 & \Lambda_R \end{pmatrix}$$

and the Dirac γ matrices are:

$$\gamma_{\mu} = \begin{pmatrix} 0 & \sigma_{\mu} \\ \bar{\sigma}_{\mu} & 0 \end{pmatrix}$$

Note: Pay attention to the position of the Lorentz indices throughout the whole exercise.

Exercise 3: Clifford algebra

- Compute the anticommutator of two Dirac matrices: $\{\gamma^{\mu}, \gamma^{\nu}\}$
- Define the matrix $\gamma^5 \equiv i \gamma^0 \gamma^1 \gamma^2 \gamma^3$. Using the previous result convince yourself that $\{\gamma^\mu, \gamma^5\} = 0$
- Prove that $P_L \equiv \frac{1}{2}(1+\gamma^5)$, $P_R \equiv \frac{1}{2}(1-\gamma^5)$ define two orthogonal projectors: $P_L + P_R = 1$, $P_L^2 = P_L$, $P_R^2 = P_R$, $P_L P_R = 0$.