Quantum Field Theory
Set 11

Exercise 1: Heisenberg representation

Write the expansion of a free massive real scalar field in the Heisenberg representation:

37 = o,
o(x) = d(Z,t) = / @gisz%[a(ht)e’k‘z + c.c.] (1)

where a(k,t) = e~*ota(k) and k§ = [K[2 +m?.

e Check that ¢(x) defined by (1) satisfies the Klein-Gordon equation
e Starting from the commutation relations for the ladder operators:
[a(F), a ()] = (27)*2ko8* (E — )
prove the canonical equal-time commutation relations:

[B(Z,1),0(F, )] =0, [8(&,1), 67, t)] = i6*(& — §),

e Argue that [¢p(z), d(y)] = 0 for =, y space-like separated: (z —y)? < 0. This is called the microcausality
condition.

Exercise 2: Time independence of Noether charges

Consider the Lagrangian for a massive real scalar field:
1 1
L= 5(9}1(;56”(;5 — §m2¢2

The Noether current related to space-time translations is the energy-momentum tensor, which in this theory takes
the form:

T;w = u¢au¢ - nuu»c

Consider the charges related to the symmetries:

e Space-time translations: P, = [ 3z : Tp,, :

e Boosts: K; = [d®x (zg: To; : —x; : Too :)

e Rotations J;; = [d3z (z; : Ty; : —x; : Ty, )
Using the representation (1) for the operator ¢ and expressing the charges in terms of ladder operators, check
explicitly that they don’t depend on time, as expected.

Notation: The colons wrapped around an operator like this: : O : denote the normal-ordering prescription. This
means that when expressing O in terms of laglder operators, all the creation operators are put on the left of the
annihilation operators, e.g.: : a(q)a(k)! := a(k)ta(q).



Exercise 3: Noether charges as generators

Given the canonical commutation rules at equal time:
[qb(fv t)a 77(377 t)] = 263(5 - 37)7
[0(Z,1), ¢4, 1)] = [x(Z,1), m(§,1)] = 0

o Show explicitly that the charge J;; is the generator of spatial rotations for the field ¢, i.e. that [J;;, ¢(Z,t)] =
iA;;(Z,t), where A;; is the infinitesimal variation of the field under rotations:

¢'(z) = () + Aij(x)a
e Repeat for the boosts (generated by K;) and space-time translations (generated by P;).

e From the previous results deduce [[J;;, Px], #(Z,t)]. Is the result consistent with the Jacobi identity?

Exercise 4: Charged scalar field

The Lagrangian for a free complex scalar field reads:
£:au¢*au¢_m2¢*¢

or, equivalently:
L = Lkg[p1] + Lralo2]

where Lk is the Klein Gordon Lagrangian for a free real scalar field and ¢; and ¢- are defined through:

_ ¢ tigo

°="A

Upon quantization, the operator ¢ can be expressed as:
(b(f’ t) _ /ko (eilaf—iknta(]g) + e—iEvf+ikoth(E))

where: . .
ai(k) —ias (k)

b(k) = %

e Find the commutation relation for the ladder operators a(k), b(k) (and their conjugates) given those of the

- -,

operators ay(k), az(k)

-

e Express the (normal-ordered) Hamiltonian in terms of the ladder operators a(k), b(k)

e Write the (normal-ordered) charge @ = [ d3z : JO : related to the U(1) symmetry in terms of the operators
a(k), b(k). (Recall that J* =i ((9*¢1)¢ — oT(9#9))).

e What is the total charge of the state |1)) = al(k1)...at (k)b (G1) ... b7 (g)[0) ?

Exercise 5: Spontaneous symmetry breaking

Consider the following Lagrangian density for a charged scalar field ¢:
L=0,0"0"¢—V(9) (2)
where
2 % /\ * 2
V(9) = m?¢"6 + 5 (6°9)".

2



For m? > 0, A > 0 show that the ground state is ¢ = 0. Convince yourself that the system has two massive
degrees of freedom.

For m? < 0, A > 0 show that the ground state is at |¢| = v, where v is a constant. Find v in terms of m?
and .

Write ¢ = v+ (¢1 +i¢2)/+/2 and substitute in the Lagrangian density. Show that there are one massive and
one massless degrees of freedom. Find the mass of the massive mode.

v+h

Repeat the last point for the parametrization ¢ = > '™, where now the fields are h and 7. How does the

Lagrangian looks like? Which form does the U(1) symmetry of (2) take in this parametrization?



