Quantum Field Theory

Set 10

Exercise 1: Hamiltonian in momentum space

Consider the Fourier expansions at a given time for a real scalar field $\phi(x,t)$ and its momentum $\pi(x,t)$:

$$\phi(x,t) = \int \frac{d^3k}{(2\pi)^3} e^{ikx} \phi(k,t), \qquad \pi(x,t) = \int \frac{d^3k}{(2\pi)^3} e^{ikx} \pi(k,t)$$

and the Hamiltonian

$$H = \int d^3x \left[\frac{1}{2} \pi(x,t)^2 + \frac{1}{2} (\nabla \phi(x,t))^2 + \frac{1}{2} m^2 \phi(x,t)^2 \right]$$

- show that $\phi(k,t) = \phi^*(-k,t)$ and $\pi(k,t) = \pi^*(-k,t)$,
- ullet compute H in terms of the Fourier transformed field and momentum.

Exercise 2: Ladder operators

Given the algebra of the ladder operators (non relativistic normalization)

$$\left[a(\vec{q}), a^{\dagger}(\vec{p})\right] = (2\pi)^3 \delta^3(\vec{q} - \vec{p}),$$

and the expression of the Hamiltonian

$$H = \int \frac{d^3k}{(2\pi)^3} \,\omega(\vec{k}) \,a^{\dagger}(\vec{k}) a(\vec{k}),$$

compute the commutation relations

$$[H,a(\vec{p})]=? \qquad \left[H,a^{\dagger}(\vec{p})\right]=?$$

Exercise 3: Invariant measure

Consider the measure on thee dimensional momentum space $\frac{d^3k}{(2\pi)^32k^0}$, where $k_0 = \sqrt{|\vec{k}|^2 + m^2}$.

- Performing a boost in a particular direction, say \hat{k}_3 , show the invariance of the measure under Lorentz transformations.
 - (*Hint*: use the form of the boost transformations $k'_0 = \cosh(\eta) \ k_0 + \sinh(\eta) \ k_3$, $k'_3 = \cosh(\eta) \ k_3 + \sinh(\eta) \ k_0$.
- Show that the product $\delta^3(\vec{k})d^3k$ is invariant under Lorentz transformation and deduce that the distribution $(2\pi)^3 2k^0\delta^3(\vec{k})$ is invariant as well. (*Hint*: write the product $\delta^3(\vec{k})d^3k$ in an explicitly covariant way involving all the four coordinates).

Exercise 4: Lorentz invariance of Noether charges

Consider a generic field theory in 1+1 dimensions. A Noether current $J^{\mu}(t,x)$ is associated to each symmetry. Then, given a coordinate system $\{t,x\}$, we define the Noether charge integrating the zero component of the current in space at fixed time t=0:

$$Q = \int dx J^0(0, x).$$

Since the Noether current satisfies $\partial_{\mu}J^{\mu} = \partial_{t}J^{0} + \partial_{x}J^{1} = 0$, Q is independent on time. This definition however is not manifestly Lorentz invariant. Indeed consider a different coordinate system $\{t', x'\}$ related to the previous one through a boost transformation:

$$t' = \gamma(t - \beta x),$$
 $x' = \gamma(x - \beta t).$

In these coordinates, we would naturally define the Noether charge integrating in space at fixed $t' = \gamma(t - \beta x) = 0$:

$$Q' = \int dx' J'^{0}(0, x'),$$

where $J^{\prime\mu}(t^{\prime},x^{\prime})=\Lambda^{\mu}_{\nu}J^{\nu}(t,x)$ is the Noether current in the second reference frame.

• Show that Q' = Q (*Hint*: integrate the identity in $\partial_{\mu}J^{\mu} = 0$ in the plane section enclosed by the lines t = 0 and t' = 0).

Exercise 5: Custodial symmetry and vacuum stability

Consider the following Lagrangian:

$$\mathcal{L} = \partial^{\mu} \Phi^{\dagger} \partial_{\mu} \Phi - m^2 \Phi^{\dagger} \Phi - \lambda (\Phi^{\dagger} \Phi)^2, \tag{1}$$

where Φ is a complex scalar field doublet:

$$\Phi = \left(\begin{array}{c} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{array} \right), \qquad \phi_i \in \mathbb{R}.$$

- What constraint must λ satisfy in order to obtain a reasonable theory?
- Find the global symmetries of (2). (*Hint*: write $\Phi^{\dagger}\Phi$ in terms of the ϕ_i).
- Add to (2) all possible dimension 6 terms invariant under $\Phi \to U\Phi$, $U \in U(2)$ which contain at most two derivatives. Does the resulting Lagrangian have the same symmetries of (2)?