Quantum Field Theory

Homework Set

This is a more advanced exercise set than the one solved in the exercise sessions, which addresses important topics of the course. Solving it is a good preparation for the exam and for the QFT2 class.

Exercise 1: Isospin \times Lorentz spinors

Consider a Weyl spinor transforming in the representation (1/2,0) of the Lorentz group ψ_L :

$$x'^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu},$$

$$\psi'_{L}(x') = \Lambda_{L} \psi_{L}(\Lambda^{-1} x'),$$

where Λ_L is the Lorentz transformation in the representation (1/2,0). We have omitted the spinor index α for shortness.

Identify the representation of the Lorentz group the following term belongs to:

$$\psi_L^{\dagger} \bar{\sigma}^{\mu} \psi_L$$
.

Consider now a pair of left Weyl spinors: ψ_L^1 , ψ_L^2 and assume they form a dublet Ψ_L of an additional Isospin SU(2) symmetry (don't confuse this SU(2) with the Lorentz Group, it's an internal symmetry). In addition take a single right Weyl spinor ψ_R which is a singlet of the SU(2) Isospin (ψ_R , Ψ_L are completely unrelated fields, they are not obtained one from the other using ε). Note that the doublet $\Psi_L = \begin{pmatrix} \psi_L^1 \\ \psi_L^2 \end{pmatrix}$ has two indices

$$(\Psi_L)^a_{\alpha}$$
 $\qquad \alpha=1,2$ represents the Lorentz index $a=1,2$ represents the Isospin index

while ψ_R has only the Lorentz $\dot{\beta}$ index, and each transformation acts separately on the two indices:

$$\begin{aligned} \text{Lorentz} \left\{ \begin{array}{c} x'^{\mu} &= \Lambda^{\mu}_{\ \nu} x^{\nu} \\ (\Psi'_L)^a_{\alpha}(x') &= (\Lambda_L)^{\dot{\beta}}_{\alpha}(\Psi_L)^a_{\beta}(\Lambda^{-1}x') \\ (\psi'_R)^{\dot{\beta}}(x') &= (\Lambda_R)^{\dot{\beta}}_{\dot{\delta}}(\psi_R)^{\dot{\delta}}(\Lambda^{-1}x'), \end{array} \right. \\ \text{Isospin} \left\{ \begin{array}{c} x'^{\mu} &= x^{\mu} \\ (\Psi'_L)^a_{\alpha}(x') &= U^a_{\ b}(\Psi_L)^b_{\alpha}(x) \\ (\psi'_R)^{\dot{\beta}}(x') &= (\psi_R)^{\dot{\beta}}(x). \end{array} \right. \end{aligned}$$

• Identify the representation of Isospin and Lorentz group the following terms belong to:

$$\psi_R^\dagger \Psi_L \,, \qquad \qquad [(\Psi_L)^a]^\dagger (\sigma^i)^a_{\ b} \partial \!\!\!/ \Psi^b_L,$$

where we have suppressed the Lorentz indices and here $\partial \equiv \bar{\sigma}_{\mu} \partial^{\mu}$. Note that in the second term the Pauli matrix is contracted with the Isospin indices while ∂ with the Lorentz ones.

Answer:
$$\psi_R^{\dagger} \Psi_L \sim \frac{1}{2} \otimes (0,0)$$
; $[(\Psi_L)^a]^{\dagger} (\sigma^i)_b^a \partial \Psi_L^b \sim 1 \otimes (0,0)$.

Exercise 2: Decomposition of tensor products

SU(2)

If u_a and v_b are doublets of SU(2), decompose into irreducible representations the following tensor products.

- $u_a v_b^* \sim \frac{1}{2} \otimes \overline{\frac{1}{2}};$
- $u_a v_b \sim \frac{1}{2} \otimes \frac{1}{2}$.

Lorentz

If ψ_{α} and ϕ_{β} are left handed spinors and A^{μ} and B^{ν} are 4-vectors, decompose into irreducible representations the following tensor products:

- $\psi_{\alpha}\phi_{\beta}\sim(\frac{1}{2},0)\otimes(\frac{1}{2},0);$
- $A_{\mu}\psi_{\alpha} \sim (\frac{1}{2}, \frac{1}{2}) \otimes (\frac{1}{2}, 0);$
- $A_{\mu}B_{\nu} \sim (\frac{1}{2}, \frac{1}{2}) \otimes (\frac{1}{2}, \frac{1}{2})$. Focus only on the scalar irrep. Can you guess the others?

Exercise 3: Scale transformations

The action of a free real massless scalar field in d dimension reads:

$$S = \int dt d^{d-1}x \ \mathcal{L}(t,x), \qquad \mathcal{L} = \frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi,$$

where $\mu = 0, 1, ..., d - 1$, $x^0 = t$ and the indices are raised and lowered with the d-dimensional metric $\eta_{\mu\nu} = \text{diag}(1, -1, ..., -1)$.

Consider the transformation

$$x^{\mu} \longrightarrow x'^{\mu} = e^{\lambda} x^{\mu}$$

$$\phi(x) \longrightarrow \phi'(x') = e^{k\lambda} \phi(e^{-\lambda} x')$$
(1)

where $\lambda \in \mathbb{R}$.

- Compute the value of k such that the above transformation defines a symmetry of the theory.
- For d=4 compute the energy momentum tensor T^{μ}_{ν} of the theory. Compute the trace of the energy momentum tensor.
- Consider the improved energy momentum tensor $K^{\mu}_{\ \nu} = T^{\mu}_{\ \nu} + A \delta^{\mu}_{\nu} \Box \phi^2 + B \partial^{\mu} \partial_{\nu} \phi^2$. Show, in d=4, that we can choose the values of A and B in such a way that $\partial_{\mu} K^{\mu}_{\ \nu} = 0$ and $K^{\mu}_{\ \mu} = 0$.
- For d=4 compute the Noether's current S^{μ} associated to the symmetry defined in (1). Express it in terms of the improved energy momentum tensor K^{μ}_{ν} and show which constraints $\partial_{\mu}S^{\mu}=0$ imposes on K^{μ}_{ν} .
- Find for which values of d the addition of the following potentials to the free Lagrangian density doesn't spoil the symmetry (that is to say the transformation is still a symmetry of the new Lagrangian density):

$$\mathcal{L}' = \partial^{\mu}\phi \partial_{\mu}\phi - \begin{cases} \frac{m^{2}}{2!}\phi^{2}, & \text{or} \\ \frac{\beta}{3!}\phi^{3}, & \text{or} \\ \frac{\alpha}{4!}\phi^{4}. & \end{cases}$$

and compute the dimension (in powers of energy) of the parameters m, β, α for those values of d.

• Discuss this result.

Exercise 4: Charges Algebra

Consider a Lie symmetry group \mathcal{G} described by parameters $\{\alpha^i\}$, acting on coordinates and fields as

$$g: \qquad x^{\mu} \longrightarrow x'^{\mu} = x^{\mu},$$

$$g: \qquad \phi_a(x) \longrightarrow \phi'_a(x') = \mathcal{R}(g)_a{}^b \phi_b(x),$$

where $\mathcal{R}(g)_a{}^b$ is the representation of an element $g \in \mathcal{G}$. Show that the Noether's charges Q_i together with the product defined by the Poisson brackets form an Algebra which is isomorphic to the Lie Algebra of \mathcal{G} .