Quantum Field Theory

Set 2

Exercise 1: Causality

Show that the propagator of a free relativistic point particle $(E_p = \sqrt{\vec{p}^2 + m^2})$

$$K(\vec{x}, t; \vec{0}, 0) \equiv \langle \vec{x} | e^{-iHt} | \vec{0} \rangle , \qquad (1)$$

does not vanishing outside the lightcone ($|\vec{x}| > t$). Focus on the limit $|\vec{x}| \gg t$ and estimate the integral through the method of the stationary phase.

Exercise 2

Consider the process $\gamma + e^- \to \gamma + e^- + e^+ + e^-$. In the frame where the electron is at rest (laboratory frame) compute the minimum photon energy E_{γ} necessary for this process to happen.

Exercise 3

Consider an infinite system of particles located along the direction x at distance a from one another. Each particle has mass m and is connected to the neighbor masses by a spring of elastic constant k and vanishing rest length. The masses are allowed to move only in the direction y. Call y_i the displacement of the mass at $x = i \cdot a$.

- 1. Find the Lagrangian that describes the system and the relative equations of motion.
- 2. Find the Hamiltonian and the first order equations of motion. Verify that they give rise to the same second order equations of motion.
- 3. Perform the continuum limit in the Lagrangian $(a \to 0)$ keeping the following quantities constant:
 - $\mu = \frac{m}{a} = \text{mass per unit length of the chain of oscillator}$,
 - Y = k a = Young elastic coefficient.
- 4. Perform the same limit in the equations of motion and verify that they can be obtained as Euler-Lagrange equations of the Action.
- 5. Find the general solution of the equations of motion.
- 6. What happens if in the initial discrete model each particle is also connected to the point (x = ia, y = 0) by a spring of frequency w'? How does the solution change in the continuum limit? (keep w'=constant in the limit)

Exercise 4: Higher derivative scalar theory

Consider the Lagrangian density of a real scalar field $\phi(\vec{x},t)$

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi)$$

- Find the equation of motion of the field ϕ
- Specialize to the massive $\lambda \phi^4$ -theory: $V = \frac{1}{2}m^2\phi^2 + \frac{1}{4!}\lambda \phi^4$.

Add to the lagrangian density the term: $\alpha(\partial_{\mu}\phi\partial^{\mu}\phi)^2$

- Compute the dimension of the constant α .
- Find the equation of motion of the field ϕ .

Exercise 5: Hamiltonian formalism

Consider the action of the massive $\lambda \phi^4$ scalar theory:

$$S = \int d^4x \, \left[\frac{1}{2} \partial_\mu \phi \partial^\mu \phi - \frac{1}{2} m^2 \phi^2 - \frac{\lambda}{4!} \phi^4 \right] \; . \label{eq:S}$$

• Find the equation of motion using the Hamiltonian formalism and show the equivalence with the Lagrangian formalism.