
Quantum Field Theory

Set 1

Exercise 1: System of natural units

Using the system of natural units (ℏ = c = µ0 = ϵ0 = 1), express the dimensionality of the
following quantities in powers of electronVolts (eV):

• Mass (M)

• Time (T )

• Length (L)

• Velocity (v)

• Force (F )

• Electric charge (Q)

• Electric Field (E)

• Magnetic Field (B)

Recall that ℏ ∼ML2/T and c ∼ L/T .

Exercise 2: Dimensional Analysis

Consider a particle with mass m. Work in a system of units where both ℏ and c are different from
1 (for example the cgs system). Construct an object with the units of length using these three
quantities. What is its physical interpretation? Compute this length in cm for a proton and an
electron whose masses are, in natural units, mp = 938 MeV and me = 0.511 MeV respectively.
(Useful relations to remember: c ≃ 3× 1010 cm/s, ℏ · c ≃ 197 MeV · fm).

Some particles are unstable and their mass can only be measured up to some uncertainty Γ.
Similarly to the previous exercise construct an object with the units of time using Γ, ℏ and
c. What is its physical interpretation? Compute this time in seconds for a Z boson for which
ΓZ = 2.495 GeV/c2.

Finally, let’s consider the case of an Hydrogen atom in the non-relativistic limit. In this case the
relevant dimensionful quantities seem to beme,mp, e (electric charge), ℏ, c. For simplicity work in
the Gaussian system of units, where 4πϵ0 = 1. Identify which of these are relevant for the case of
the Hydrogen atom. Build an object with dimensions of length and one with dimension of energy.
What are their values in cm and eV, respectively? What are their physical interpretations? (In
Gaussian units e2 = 1.438× 10−7 eV · cm)



Exercise 3: Relativistic action of a point particle

Recall the infinitesimal proper time of a point particle,

dτ 2 = c2dt2 − dx2 − dy2 − dz2. (1)

Since dτ is a Lorentz invariant quantity it is natural to consider the action for a relativistic point
particle as

S = α

∫
dτ, (2)

where α is some constant.

• Write the action in the usual form S =
∫
Ldt, where the Lagrangian L will depend on the

velocity v⃗ =
(
dx
dt
, dy
dt
, dz
dt

)
.

• Fix α by taking the non-relativistic limit c → ∞, and matching with the Newtonian ex-
pression. (Recall that a constant can always be added to the action since the equations of
motion are not affected.)

• Compute the canonical momentum p⃗ = ∂L
∂v⃗

and the Hamiltonian H = p⃗ · v⃗−L. Express the
energy E = H in terms of p⃗ to obtain the relativistic dispersion relation.

Exercise 4: Relativistic Schröedinger equation

Consider the relativistic Schroedinger equation in one spatial dimension

i∂tψ(t, x) =
√

−∂2x +m2ψ(t, x)

• write how Lorentz transformations act on x, t, ∂t and ∂x

• show that if ψ(t, x) satisfies the above equation and if it transforms as ψ′(t′, x′) = ψ(t, x)
under Lorentz transformations, then the transformed ψ satisfies the same equation in the
new frame

i∂′tψ
′(t′, x′) =

√
−∂′2x +m2ψ(t′, x′)
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