Quantum Field Theory

Set 9

Exercise 1: WZW term

Consider 5 real scalar fields, η_i (i = 1, 2) and ϕ_I (I = 1, 2, 3), with Lagrangian

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \eta_{i} \partial^{\mu} \eta_{i} + \frac{1}{2} \partial_{\mu} \phi_{I} \partial^{\mu} \phi_{I} - \frac{m^{2}}{2} (\eta_{i} \eta_{i}) - \frac{M^{2}}{2} (\phi_{I} \phi_{I}) - \lambda (\eta_{i} \partial_{\mu} \eta_{j}) (\partial_{\nu} \phi_{I} \partial_{\rho} \phi_{J} \partial_{\sigma} \phi_{K}) \epsilon^{ij} \epsilon^{IJK} \epsilon^{\mu\nu\rho\sigma}$$

where ϵ^{ij} , ϵ^{IJK} , $\epsilon^{\mu\nu\rho\sigma}$ are the Levi-Civita antisymmetric tensors in respectively 2, 3 and 4 dimensions.

- What is the dimensionality of the coupling λ ?
- Find the symmetries of the system

Hint: consider a generic transformation $\eta_i \to M_{ij}\eta_j$ and $\phi_i \to N_{ij}\phi_j$ where M and N are 2×2 and 3×3 matrices respectively. What properties should M and N satisfy to leave the Lagrangian invariant? Also remember that for a $N \times N$ matrix M we have the following identity

$$\epsilon_{i_1,i_2,...,i_N} M_{i_1j_1} M_{i_2j_2} \dots M_{i_Nj_N} = \det(M) \epsilon_{j_1,j_2,...,j_N}$$

- On which parameters do the Noether currents depend on?
- \bullet Suppose now that the η fields are complex, and the Lagrangian is:

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \eta_{i}^{*} \partial^{\mu} \eta_{i} + \frac{1}{2} \partial_{\mu} \phi_{I} \partial^{\mu} \phi_{I} - \frac{m^{2}}{2} (\eta_{i}^{*} \eta_{i}) - \frac{M^{2}}{2} (\phi_{I} \phi_{I}) - i\lambda (\eta_{i}^{*} \partial_{\mu} \eta_{i}) (\partial_{\nu} \phi_{I} \partial_{\rho} \phi_{J} \partial_{\sigma} \phi_{K}) \epsilon^{IJK} \epsilon^{\mu\nu\rho\sigma}$$

What are in this case the symmetries of the system?

• What if we change the interaction term to:

$$\lambda(\eta_i \partial_\mu \eta_j)(\partial_\nu \phi_I \partial_\rho \phi_J \partial_\sigma \phi_K) \epsilon^{ij} \epsilon^{IJK} \epsilon^{\mu\nu\rho\sigma} + h.c.$$

Exercise 2: SO(N) and \mathbb{D}_4

Part 1. Consider N scalar fields $\Phi(x) = (\phi_1(x), \phi_2(x), \dots, \phi_n(x))$ transforming in the fundamental representation of SO(N):

$$\Phi(x) \longrightarrow \Phi'(x) = O\Phi(x), \qquad O \in SO(N).$$

Write the most general Lagrangian \mathcal{L} for $\Phi(x)$ such that

- \mathcal{L} is Lorentz invariant,
- contains only terms with dimension less or equal than four (or equivalently, whose coupling have dimension greater or equal to zero),
- it is invariant under SO(N).

Is the internal symmetry group of \mathcal{L} bigger than SO(N)? Consider the case N=1 and $N\geq 2$ separately.

Part 2. Consider now a theory with two scalar fields ϕ_1 and ϕ_2 . Build the most general Lorentz invariant Lagrangian with terms up to dimension 4 that is symmetric under the following three transformations separately:

- $\phi_1 \rightarrow -\phi_1$
- $\phi_2 \rightarrow -\phi_2$
- $\phi_1 \leftrightarrow \phi_2$

What is the difference between this group and $\mathbb{Z}_2 \otimes \mathbb{Z}_2 \otimes \mathbb{Z}_2$? (Reminder: \mathbb{Z}_2 is the group formed by two elements $\{1, -1\}$ with their product)

How many elements does this transformation group have?

Can you find a matrix representation for this group?

In which case the Lagrangian you just built is invariant under O(2) as in the first part of this exercise?

Exercise 3: Decomposition in Fourier modes

Given the decomposition of a real scalar field in a finite cubic volume $V = L^3$

$$\phi(t, \vec{x}) = \sum_{\vec{n} \in \mathbb{Z}^3} \frac{1}{\sqrt{V}} \phi_n(t) e^{i\frac{2\pi}{L} \vec{n} \cdot \vec{x}}$$

$$\tag{1}$$

Expand $\int d^3x (\vec{\nabla}\phi)^2(t,\vec{x})$ in Fourier modes $\phi_n(t)$.

Exercise 4: Noether's current: a different approach

There is another way to find the Noether's current of a Lagrangian with a given symmetry without having to use the explicit formula of the theorem. This can sometimes be faster than applying the formula. The idea is that we consider a transformation of the symmetry group where we take the Lie parameters α dependent on x (local transformation). We know that if α does not depend on x (global transformation) then $\delta S=0$ under this transformation by definition of symmetry. If α depends on x then δS will no longer be zero, but at the leading order in α it will be proportional to $\partial \alpha$. Explicitly

• Compute δS as in the derivation of the Noether theorem but being careful that α depends on x. Knowing that δS is zero when α is constant show that

$$\delta S = \int d^4x \, (\partial_\mu \alpha(x)) J^\mu + \mathcal{O}(\alpha^2)$$

where J^{μ} is the Noether current given by the Noether theorem (you can work in the case K=0 for simplicity).

• Apply this procedure to the U(1) symmetry in a complex scalar field theory and show that you get the same current as the previous exercise set.

Exercise 5: Noether's charge as generator of transformation: part 2

Given a Lagrangian density $\mathcal{L}(\phi_a, \partial_\mu \phi_b)$ consider the global symmetry transformation defined by

$$x^{\mu} \longrightarrow x'^{\mu} = x^{\mu}$$

 $\phi_a(x) \longrightarrow \phi'_a(x) = D[\phi]_a(x) \simeq \phi_a(x) + i\alpha^i T^b_{i,a} \phi_b(x),$

where the $T^b_{i,a}$ are the representation of the generators of some Lie algebra of some Lie group \mathcal{G} .

• Find the following transformation of the conjugate momenta $\pi^a(x)$

$$\pi^a(x) \longrightarrow \pi'^a(x) = D^{\pi}[\pi]^a(x) \simeq \pi^a(x) - i\alpha^i T^a_{i,b} \pi^b(x),$$

and show that charge Q_i built starting from the Noether's current is the generator of the transformation:

$$\delta_{\alpha} \pi^{a}(x) \equiv \pi'^{a}(x) - \pi^{a}(x) = \alpha^{i} \{Q_{i}, \pi^{a}(x)\} = -i\alpha^{i} T_{i,b}^{a} \pi^{b}(x).$$

• Using the Jacobi identity and that $\{Q_i, \phi_a\} = iT_{i,a}^b \phi_b(x)$ (as you proved in the last exercise set), compute the following object

$$\{\phi_a\{Q_i,Q_j\}\}\ , \tag{2}$$

and deduce $\{Q_i, Q_j\}$.

• Compute explicitly the Poisson bracket

$$\{Q_i, Q_j\} \equiv \int d^3z \frac{\delta Q_i}{\delta \pi_a(z)} \frac{\delta Q_j}{\delta \phi^a(z)} - \frac{\delta Q_i}{\delta \phi_a(z)} \frac{\delta Q_j}{\delta \pi^a(z)}$$
(3)

and check that the result is consistent with what you have found before.