Quantum Field Theory

Set 7

Exercise 1: (0,1/2) and (1/2,0) representations of the Lorentz group.

Starting from the explicit form of the spin-1/2 representations of SU(2) determine the form of the Lorentz transformations in the (0,1/2) and (1/2,0) representations. (Hint: How are the generators of the Lorentz group represented in these representations?). What about the (1/2,1/2) representation?

Exercise 2: Representation of Poincaré Group on scalar functions (class repeat)

We define a $scalar\ f$ as a map from events e in Minkowski space to real numbers:

$$f: e \in \mathbb{M} \to f(e) \in \mathbb{R}$$

In a specific frame, we label an event e with a coordinate four-vector $x^{\mu} \in \mathbb{R}^{3,1}$. The realization of f in this frame is given by a scalar function ϕ of x^{μ} : $f(e) = \phi(x(e)) \equiv \phi(x)$. The realization of f in a different frame x'^{μ} is generically given by a different function ϕ' given by $f(e) = \phi'(x'(e)) \equiv \phi'(x')$.

Call H the set of scalar functions of x^{μ} and denote $\phi(x)$ a generic element of it. Take an element of the Poincaré group acting on x^{μ} as:

$$g \equiv (\Lambda, a): x^{\mu} \longrightarrow \Lambda^{\mu}_{\nu} x^{\nu} + a^{\mu} \equiv P_{(\Lambda, a)}(x^{\mu}).$$

Define the action of q on H as follows

$$(\mathcal{D}_{(\Lambda,0)}[\phi])(x) = \phi(\Lambda^{-1}x), \qquad (\mathcal{D}_{(0,a)}[\phi])(x) = \phi(x-a), \phi'(x) \equiv (\mathcal{D}_{(\Lambda,a)}[\phi])(x) = (\mathcal{D}_{(0,a)}[\mathcal{D}_{(\Lambda,0)}[\phi]])(x) = \phi(\Lambda^{-1}(x-a)).$$

Show that this definition respects the group composition law and therefore defines a representation.

Exercise 3: Poincaré algebra on fields

Consider a scalar field $\phi(x)$. As shown in class, the Poincaré generators are represented on scalar fields by

$$P^{\mu} = i\partial^{\mu}, \qquad J^{\mu\nu} = i(x^{\mu}\partial^{\nu} - x^{\nu}\partial^{\mu}).$$

Compute the commutators

$$[P^{\mu}, P^{\nu}] = ?, \qquad [P^{\mu}, J^{\rho\sigma}] = ?, \qquad [J^{\mu\nu}, J^{\rho\sigma}] = ?,$$

using this representation. Show that you get the Poincaré algebra.

Exercise 4: Lorentz invariance of Lagrangians

Consider a real scalar field $\phi(x)$. Write how the field $\phi(x)$ transforms under the action of an element of the Poincaré group. Take the action S built starting from the following Lagrangian density

$$S = \int dt \, d^3x \, \mathcal{L}, \qquad \mathcal{L} = \frac{1}{2} \partial_\mu \phi \, \partial^\mu \phi - V(\phi).$$

Show that:

• the volume element dtd^3x is invariant under Poincaré transformations;

 $\bullet\,$ the Poincaré group is a symmetry of the theory.

Repeat the analysis for the electromagnetic field:

- ullet identify how the vector field A_μ transforms under the action of an element of the Poincaré group;
- show that the Poincaré group is a symmetry of the theory $\mathcal{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu}$.