Quantum Field Theory

Set 6

Exercise 1: The adjoint representation

Consider a Lie group \mathcal{G} of dimension N. Let X^a be the generators of \mathcal{G} in a generic representation D(g) of dimension d that satisfy the Lie Algebra

$$[X^a, X^b] = if^{abc}X^c$$

Assume for simplicity to parametrise $D(g(\alpha)) = e^{iX^a\alpha^a}$ where $\alpha_{i=1,\dots,N}$ are the N parameters defining the group element. The N generators define the N-dimensional vector space of the Lie algebra, call it \mathfrak{g} . The adjoint representation R(q) is defined on this vector space by the following action

$$R(g): V_{ij} = v^a X_{ij}^a \to_g V'_{ij} = D(g)_{ik} V_{kl} D(g^{-1})_{lj}.$$
(1)

• Show that if $V = v^a X^a$ then $V' = v'^a X^a$, i.e. the R(g) defines a map from \mathfrak{g} to itself (automorphism). Hint: You can use the Hadamard formula

$$e^{X}Ye^{-X} = Y + [X, Y] + \frac{1}{2!}[X, [X, Y]] + \dots$$

- Show that R(g) is a representation. What is its dimension?
- The action of R(g) is equivalent to the linear transformation on the components of V

$$v'^a = R^{ab}(g)v^b\,,$$

Given $R(g(\alpha)) = e^{i\tilde{X}^a\alpha^a}$, expanding eq. (1) at the first order in α , show that the generators \tilde{X}^a are related to the structure constants as

$$\tilde{X}_{ij}^a = -if_{aij}$$

• Show that the Jacobi identity for the Lie Algebra implies that the structure constant f satisfy the Algebra and so the \tilde{X}^a are valid generators.

Exercise 2: building SU(2) representations

Construct explicitly the following representation of SU(2), i.e. write the matrix form of the generators for:

- j = 1 representation;
- j = 3/2 representation;
- j = 2 representation.

Recall that in set 5 you showed that a representation j is made of 2j+1 vectors $|j,m\rangle$, with $m=-j,-j+1,\ldots,j-1,j$, on which the Lie algebra is represented as:

$$\begin{split} T^3 \left| j,m \right\rangle &= m \left| j,m \right\rangle, \\ T^{\pm} \left| j,m \right\rangle &= \frac{1}{\sqrt{2}} \sqrt{j(j+1) - m(m\pm 1)} \left| j,m \pm 1 \right\rangle, \\ T^{\pm} &= \frac{T^1 \pm i T^2}{\sqrt{2}}. \end{split}$$

Write explicitly a rotation around the \hat{z} axis, i.e. $e^{i\phi T^3}$, in these representations. Homework: construct explicitly the rotations $e^{i\phi T^1}$ and $e^{i\phi T^2}$. Use Mathematica if you want.

Exercise 3: SO(3) vs SU(2): the adjoint representation

In this exercise we will explore the connection between the two groups SO(3) and SU(2).

Consider the representation of the SO(3) group on the three dimensional vector space \mathbb{R}^3 (also known as the defining representation).

- Show that the set of three 3×3 matrices $(T^a)_i^j = -i\epsilon_{aij}$ (a = 1, 2, 3) is a basis for (a representation of) the Lie Algebra of SO(3), and find this algebra explicitly (i.e. find the structure constants of so(3)).
- Consider an element of the group $R(\vec{\alpha}) = e^{i\alpha^a T^a}$. Write $\vec{\alpha} = \theta \vec{n}$ with $\vec{n} = \vec{\alpha}/|\vec{\alpha}|$. Expanding for $\theta \ll 1$, find how a vector $\vec{x} = (x^1, x^2, x^3) \in \mathbb{R}^3$ transforms under the action of an infinitesimal element of the group $(R(\vec{\alpha})$ represents a rotation around the \vec{n} direction by an angle θ).
- Consider for simplicity the case $\vec{n} = \vec{e}_3$. Use the exponential map to find the group transformation for a finite value of θ .

Take the group SU(2). Consider the tensor product representation of this group on the vector space of traceless Hermitean matrices:

$$V = \{ M \in M(2 \times 2, \mathbb{C}) | M = M^{\dagger}, \text{Tr}[M] = 0 \}.$$

The action of an element U of the group (recall that U is itself a 2×2 matrix) is given by

$$U: M \to UMU^{\dagger}$$
.

- Show that the three Pauli matrices σ^i form a basis of the space V and therefore any $M \in V$ can be written as $M = \sum_{i=1}^3 y_i \sigma^i$.
- Show that the vector space V coincides with the vector space of the su(2) Lie Algebra.
- Consider now an infinitesimal SU(2) transformation on this space. Show that the action of a given element U of SU(2) corresponds to a rotation of the three dimensional vector $\vec{y} \equiv (y^1, y^2, y^3)$. Is this a faithful representation for SU(2)?

Exercise 4: Tensor product of SU(2) vectors

- Using the highest-weight technique reduce the tensor product of two spin-1 SU(2) representations.
- An SU(2) vector can be thought as a 1-index tensor v_i transforming as $v_i \to \sum_j R_{ij}v_j$, where R is an orthogonal matrix. Starting from the product of 2 vectors v_iw_j , show that this is a representation of SU(2): the tensor product of 2 vector representations. Show that it is reducible and do the reduction in terms of irreducible tensor representations of SU(2). Show that the result matches with what you found by the highest weight technique.

Optional: Sum of spins in group theoretic language

The statement that two particles have spin 1/2 reflects the fact that each particle can exist in two different states corresponding to the values of the z-component of the angular momentum. These two states define a vector space on which the group SU(2) is represented. Consider the total spin of the bound state of the two particles: this corresponds to taking the tensor product of two j = 1/2 representations. Show that the resulting vector space,

$$V = \left\{ |s_1\rangle \otimes |s_2\rangle, \ s_i = \pm \frac{1}{2} \right\},$$

can be decomposed in a direct sum of two spaces on which act irreducible representations of SU(2). Find these representations.

Exercise 5: Lorentz Group and Lorentz Algebra

Consider the set of the Lorentz transformations in space-time. Show that they correspond to the group

$$O(1,3) = \left\{ \Lambda \in GL(4,\mathbb{R}) \mid \Lambda^T \eta \Lambda = \eta \right\},\,$$

where η is the metric with Minkowski signature $\eta = \text{diag}(1, -1, -1, -1)$. Starting from the above definition

- identify the Lie algebra;
- compute the dimension of the Lie algebra;

A basis of this Lie algebra is provided by the following matrices:

$$(\mathcal{J}^{\mu\nu})^{\rho}_{\sigma} = i \left(\eta^{\mu\rho} \delta^{\nu}_{\sigma} - \eta^{\nu\rho} \delta^{\mu}_{\sigma} \right);$$

• Show that Lie algebra structure is:

$$[\mathcal{J}^{\mu\nu}, \mathcal{J}^{\alpha\beta}] = i(\eta^{\nu\alpha}\mathcal{J}^{\mu\beta} - \eta^{\mu\alpha}\mathcal{J}^{\nu\beta} + \eta^{\mu\beta}\mathcal{J}^{\nu\alpha} - \eta^{\nu\beta}\mathcal{J}^{\mu\alpha});$$

• define the quantities

$$J^i = \frac{1}{2} \epsilon^{ijk} \mathcal{J}^{jk} , \qquad K^i = \mathcal{J}^{i0} ,$$

and compute the commutation relations between them:

$$\begin{bmatrix} J^i, J^j \end{bmatrix} = ? , \qquad \begin{bmatrix} J^i, K^j \end{bmatrix} = ? , \qquad \begin{bmatrix} K^i, K^j \end{bmatrix} = ? .$$

Can you guess which types of transformations do the vectors J^i and K^i generate?

Exercise 6: Lorentz boosts and rapidity

Consider a Lorentz boost along the x-axis

$$\Lambda = \exp[-in\mathcal{J}^{10}].$$

The parameter η is called rapidity of the boost along that axis. Show that this boost can be written as

$$\Lambda = \begin{pmatrix} \cosh(\eta) & -\sinh(\eta) & 0 & 0 \\ -\sinh(\eta) & \cosh(\eta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Express the velocity β and the boost factor γ in terms of the rapidity.

Show that applying two boosts along the same direction, characterized by rapidities η and η' , the total transformation is again a boost along the same direction, characterized by rapidity $\eta + \eta'$.