
Quantum Field Theory

Set 6

Exercise 1: The adjoint representation

Consider a Lie group G of dimension N . Let Xa be the generators of G in a generic representation D(g) of
dimension d that satisfy the Lie Algebra

[Xa, Xb] = ifabcXc

Assume for simplicity to parametrise D(g(α)) = eiX
aαa

where αi=1,...,N are the N parameters dening the group
element. The N generators dene the N−dimensional vector space of the Lie algebra, call it g. The adjoint
representation R(g) is dened on this vector space by the following action

R(g) : Vij = vaXa
ij →g V ′

ij = D(g)ikVklD(g−1)lj  (1)

• Show that if V = vaXa then V ′ = v′aXa, i.e. the R(g) denes a map from g to itself (automorphism). Hint:
You can use the Hadamard formula

eXY e−X = Y + [X,Y ] +
1

2!
[X, [X,Y ]] +   

• Show that R(g) is a representation. What is its dimension?

• The action of R(g) is equivalent to the linear transformation on the components of V

v′a = Rab(g)vb ,

Given R(g(α)) = eiX̃
aαa

, expanding eq. (1) at the rst order in α, show that the generators X̃a are related
to the structure constants as

X̃a
ij = −ifaij

• Show that the Jacobi identity for the Lie Algebra implies that the structure constant f satisfy the Algebra
and so the X̃a are valid generators.

Exercise 2: building SU(2) representations

Construct explicitly the following representation of SU(2), i.e. write the matrix form of the generators for:

• j = 1 representation;

• j = 32 representation;

• j = 2 representation.

Recall that in set 5 you showed that a representation j is made of 2j+1 vectors |j,m⟩, with m = −j,−j+1,    , j−
1, j, on which the Lie algebra is represented as:

T 3 |j,m⟩ = m |j,m⟩ ,

T± |j,m⟩ = 1√
2


j(j + 1)−m(m± 1) |j,m± 1⟩ ,

T± =
T 1 ± iT 2

√
2



Write explicitly a rotation around the ẑ axis, i.e. eiϕT
3

, in these representations.
Homework: construct explicitly the rotations eiϕT

1

and eiϕT
2

. Use Mathematica if you want.



Exercise 3: SO(3) vs SU(2): the adjoint representation

In this exercise we will explore the connection between the two groups SO(3) and SU(2).

Consider the representation of the SO(3) group on the three dimensional vector space R3 (also known as the
dening representation).

• Show that the set of three 3× 3 matrices (T a) j
i = −iϵaij (a = 1, 2, 3) is a basis for (a representation of) the

Lie Algebra of SO(3), and nd this algebra explicitly (i.e. nd the structure constants of so(3)).

• Consider an element of the group R(α⃗) = eiα
aTa

. Write α⃗ = θ n⃗ with n⃗ = α⃗|α⃗|. Expanding for θ ≪ 1,
nd how a vector x⃗ = (x1, x2, x3) ∈ R3 transforms under the action of an innitesimal element of the group
(R(α⃗) represents a rotation around the n⃗ direction by an angle θ).

• Consider for simplicity the case n⃗ = e⃗3. Use the exponential map to nd the group transformation for a
nite value of θ.

Take the group SU(2). Consider the tensor product representation of this group on the vector space of traceless
Hermitean matrices:

V =

M ∈ M(2× 2,C)|M = M †, Tr[M ] = 0




The action of an element U of the group (recall that U is itself a 2× 2 matrix) is given by

U : M → UMU †

• Show that the three Pauli matrices σi form a basis of the space V and therefore any M ∈ V can be written
as M =

3
i=1 yiσ

i.

• Show that the vector space V coincides with the vector space of the su(2) Lie Algebra.

• Consider now an innitesimal SU(2) transformation on this space. Show that the action of a given element
U of SU(2) corresponds to a rotation of the three dimensional vector y⃗ ≡ (y1, y2, y3). Is this a faithful
representation for SU(2)?

Exercise 4: Tensor product of SU(2) vectors

• Using the highest-weight technique reduce the tensor product of two spin-1 SU(2) representations.

• An SU(2) vector can be thought as a 1-index tensor vi transforming as vi → 
j Rijvj , where R is an

orthogonal matrix. Starting from the product of 2 vectors viwj , show that this is a representation of SU(2):
the tensor product of 2 vector representations. Show that it is reducible and do the reduction in terms
of irreducible tensor representations of SU(2). Show that the result matches with what you found by the
highest weight technique.

Optional: Sum of spins in group theoretic language

The statement that two particles have spin 12 reects the fact that each particle can exist in two dierent states
corresponding to the values of the z-component of the angular momentum. These two states dene a vector space
on which the group SU(2) is represented. Consider the total spin of the bound state of the two particles: this
corresponds to taking the tensor product of two j = 12 representations. Show that the resulting vector space,

V =


|s1⟩ ⊗ |s2⟩ , si = ±1

2


,

can be decomposed in a direct sum of two spaces on which act irreducible representations of SU(2). Find these
representations.
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Exercise 5: Lorentz Group and Lorentz Algebra

Consider the set of the Lorentz transformations in space-time. Show that they correspond to the group

O(1, 3) =

Λ ∈ GL(4,R) | ΛT ηΛ = η


,

where η is the metric with Minkowski signature η = diag(1,−1,−1,−1). Starting from the above denition

• identify the Lie algebra;

• compute the dimension of the Lie algebra;

A basis of this Lie algebra is provided by the following matrices:

(J µν)ρσ = i (ηµρδνσ − ηνρδµσ) ;

• Show that Lie algebra structure is:


J µν ,J αβ


= i(ηναJ µβ − ηµαJ νβ + ηµβJ να − ηνβJ µα);

• dene the quantities

J i =
1

2
ϵijkJ jk , Ki = J i0 ,

and compute the commutation relations between them:


J i, Jj


=? ,


J i, Kj


=? ,


Ki, Kj


=? 

Can you guess which types of transformations do the vectors J i and Ki generate?

Exercise 6: Lorentz boosts and rapidity

Consider a Lorentz boost along the x-axis
Λ = exp[−iηJ 10]

The parameter η is called rapidity of the boost along that axis. Show that this boost can be written as

Λ =




cosh(η) − sinh(η) 0 0
− sinh(η) cosh(η) 0 0

0 0 1 0
0 0 0 1


 

Express the velocity β and the boost factor γ in terms of the rapidity.
Show that applying two boosts along the same direction, characterized by rapidities η and η′, the total transfor-
mation is again a boost along the same direction, characterized by rapidity η + η′.
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