Quantum Field Theory

Set 14

Exercise 1: U(1) symmetry and chiral symmetry

Given the Lagrangian density of a massless Dirac fermion $\psi \equiv \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix}$:

$$\mathcal{L} = i\bar{\psi} \, \partial \psi,$$

verify that it is invariant under a symmetry $U(1)_L \times U(1)_R$ where each U(1) acts independently on the left or right component of the Dirac fermion.

Compute the Noether's currents J_L^{μ} and J_R^{μ} associated to these symmetries.

Consider the combinations

$$J_{V}^{\mu} = J_{R}^{\mu} + J_{L}^{\mu}, \qquad \qquad J_{A}^{\mu} = J_{R}^{\mu} - J_{L}^{\mu}.$$

Show that these are the Noether's currents associated to the following symmetry transformation acting on the Dirac fermion:

$$U(1)_V: \ \psi \longrightarrow e^{i\alpha}\psi,$$

 $U(1)_A: \ \psi \longrightarrow e^{i\beta\gamma^5}\psi,$

where $\gamma^5 \equiv i\gamma^0\gamma^1\gamma^2\gamma^3$.

What changes if one adds a mass term for the Dirac fermion: $m\bar{\psi}\psi$?

Exercise 2: Angular momentum in the Dirac theory

Starting from the Dirac Lagrangian (written in its hermitian form) compute the Noether's current $M^{\rho}_{\mu\nu}$ associated to Lorentz invariance.

Introduce the angular momentum operator

$$J^k \equiv \frac{1}{2} \epsilon^{ijk} \int d^3x \ M_{ij}^0.$$

Show that it can be written as

$$J^k = \int d^3x \ \psi^{\dagger}(t, \vec{x}) (L_k + \Sigma_k/2) \psi(t, \vec{x}),$$

where

$$L^{k} = [\vec{x} \wedge (-i\vec{\nabla})]^{k},$$

$$\Sigma^{k} = \begin{pmatrix} \sigma^{k} & 0\\ 0 & \sigma^{k} \end{pmatrix},$$

are respectively the orbital and spin parts. Defining

$$\vec{S} = \int d^3x \ \psi^{\dagger}(t, \vec{x}) \frac{\vec{\Sigma}}{2} \psi(t, \vec{x}),$$

compute the eigenvalue of the operator \vec{S}^2 on a generic one-particle state in position space, $\psi_{\alpha}^{\dagger}(t,\vec{x})|0\rangle \equiv |x,\alpha\rangle$, and show this way that ψ^{\dagger} creates states with spin one half.

Exercise 3: Commutator of bilinear operators

Start from the following general identities (which you can easily check explicitly):

$$[A, BC] = \{A, B\} C - B \{A, C\}$$

$$[A, BC] = B[A, C] + [A, B]C$$

Consider a bilinear operator $O_A = \psi_i^{\dagger} A_{ij} \psi_j$ where ψ_i can be either bosonic variables:

$$[\psi_i, \psi_j^{\dagger}] = \delta_{ij}, \quad [\psi_i, \psi_j] = 0$$

or fermionic variables:

$$\left\{\psi_i, \psi_j^{\dagger}\right\} = \delta_{ij}, \quad \left\{\psi_i, \psi_j\right\} = 0.$$

Compute the commutators $[\psi_i^{\dagger}, O_A]$ and $[\psi_i, O_A]$. Use this result to argue that the equations of motion for a Dirac field in Hamiltonian formalism do not depend on whether we quantize the field using commutation or anticommutation relations. Namely, given the Hamiltonian operator

$$H = \int d^3x \bar{\psi} \left(-i\vec{\gamma} \cdot \nabla + m \right) \psi,$$

show that

$$i\frac{\partial \psi(\vec{x},t)}{\partial t} = [\psi(\vec{x},t),H], \qquad i\frac{\partial \pi(\vec{x},t)}{\partial t} = [\pi(\vec{x},t),H]$$

give the same equations of motion both if you impose $[\psi(\vec{x},t),\pi(\vec{y},t)]=i\delta^3(\vec{x}-\vec{y})$ or $\{\psi(\vec{x},t),\pi(\vec{y},t)\}=i\delta^3(\vec{x}-\vec{y})$, where $\pi(\vec{x},t)=i\psi^{\dagger}(\vec{x},t)$.

Consider now two bilinear operators $O_A = \psi_i^{\dagger} A_{ij} \psi_j$, $O_B = \psi_i^{\dagger} B_{ij} \psi_j$. Compute the commutators relations $[O_A, O_B]$ both in case the variables ψ are bosonic and in case they are fermionic.

Quantum Field Theory

References & Exercises

- "A Modern Introduction to Quantum Field Theory", Maggiore: Paragraphs: 1.2, 2.1-2.7, 3.1-3.4, 4.1-4.2.2
- "An Introduction to Quantum Field Theory", Peskin & Schroeder: Pages: 13-26, 35-62
- "An Introduction to Quantum Field Theory", Peskin & Schroeder: Problems 2.1, 3.4, 3.5
- "A Modern Introduction to Quantum Field Theory", Maggiore: Problems 2.1-2.5, 3.1, 3.5, 3.6 (solutions at the end of the book)