
RELATIVITY AND COSMOLOGY I
Solutions to Problem Set 14 Fall 2022

1. The Hulse-Taylor Binary

(a) Approximating the orbit as circular, and the two stars’ masses as equal, we get that
the orbit is simply parametrized as

x1 = r cos(Ωt) , y1 = r sin(Ωt) ,

x2 = −r cos(Ωt) , y2 = −r sin(Ωt) .
(1)

(b) The energy density is thus

T 00(t, ~x) = Mδ(z)
[
δ(x − r cos(Ωt))δ(y − r sin(Ωt))

+ δ(x + r cos(Ωt))δ(y + r sin(Ωt))
]

.
(2)

(c) The quadrupole moments are thus

Ixx = 2Mr2 cos2(Ωt) ,

Ixy = 2Mr2 cos(Ωt) sin(Ωt) ,

Iyy = 2Mr2 sin2(Ωt) ,

Ixz = 0 ,

Iyz = 0 ,

Izz = 0 ,

(3)

and Iji = Iij.

(d) To compute the power emitted we first compute the traceless part of the quadrupole
moment

Jxx = Ixx − 1
3(Ixx + Iyy) = 2Mr2

3
[
3 cos2(Ωt) − 1

]
,

Jxy = Ixy = 2Mr2 cos(Ωt) sin(Ωt) ,

Jyy = Iyy − 1
3(Ixx + Iyy) = 2Mr2

3
[
3 sin2(Ωt) − 1

]
,

Jzz = −1
3(Ixx + Iyy) = −2Mr2

3 .

(4)

where all other entries are related by symmetry or are vanishing. The third deriva-
tives are

d3Jij

dt3 = 8MΩ3r2

 sin(2Ωt) − cos(2Ωt) 0
− cos(2Ωt) − sin(2Ωt) 0

0 0 0

 (5)
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The object of interest to compute the power is

d3Jij

dt3
d3J ij

dt3 =
(

d3Jxx

dt3

)2

+
(

d3Jyy

dt3

)2

+ 2
(

d3Jxy

dt3

)2

= 64M2Ω6r4
(
2 sin2(2Ωt) + 2 cos2(2Ωt)

)
= 128M2Ω6r4

(6)

The emitted power is thus

P = −128
5 GM2r4Ω6 . (7)

(e) We derived the rate of change of the total energy of the system. To find the rate of
change of the period, we need to find the relation between period and energy of the
system. For a circular orbit, we can equate the Newtonian force to the centripetal
force to find the velocity in terms of the distance between the stars

GM2

(2r)2 = Mv2

r
(8)

which gives us the velocity

v =
√

GM

4r
. (9)

From this we can derive the total energy of the system as a function of the distance
between the two stars only

E = Mv2 − GM2

2r
= −GM2

4r
. (10)

We can invert this to find the radius of an orbit of energy E

r = −GM2

4E
. (11)

The period is instead

T = 2πr

v
= 2πr

√
4r

GM
= πGM

2

(
−M

E

) 3
2

. (12)

Its rate of change is thus

dT

dt
= 3πG

4

(
−M

E

) 5
2 dE

dt
= 3G

(2π2)1/3

(
T

GM

) 5
3

P . (13)

We need to write the power itself in terms of the period

P = −128
5 GM2r4Ω6 = −128

5 2 2
3 G

7
3

(
πM

T

) 10
3

. (14)

In total, the differential equation for T is

dT

dt
= −384

5 2 1
3 π

8
3

(
GM

T

) 5
3

. (15)
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Let us restore the powers of c. The quantity in brackets should clearly be dimen-
sionless, which is achieved by adding c3 in the denominator

dT

dt
= −384

5 2 1
3 π

8
3

(
GM

Tc3

) 5
3

. (16)

The solution to this differential equation is

T (t) =
T

8
3

0 − 1024
5 2 1

3 π
8
3

(
GM

c3

) 5
3

t

 3
8

. (17)

By plugging in the numbers, we find that the lifetime of this system, or t∗ such that
T (t∗) = 0, is

t∗ ∼ 1 Gyrs , (18)

which is only off by a factor of ∼ 3 from the real world system (which has an
elliptical orbit) and has a lifetime of t∗ ∼ 300 Myrs.

2. The Inside of a Fermi Star

(a) For convenience, let us write the TOV equation in terms of the function m(r)
only. We use the following relations

ρ(r) = 1
4πr2

dm

dr
, P = ρ

3 . (19)

The TOV equation reads

2m′(12m + (2m′ − 3)r)
r(r − 2m) + 3m′′ = 0 , (20)

where primes are derivatives with respect to r.
(b) By substituting m(r) = Ar we get

2A(12Ar + (2A − 3)r)
r(r − 2Ar) = 0

rA(28A − 6) = 0

A = 3
14 .

(21)

The solution is thus m(r) = 3
14r . The energy density and pressure will then be

ρ(r) = 3
56πr2 , P (r) = 1

56πr2 . (22)

The central density and pressure are infinite, and the radius is infinite since
P (r) is zero only at infinity.
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(c) To write the metric we need to compute α(r).

α(r) =
∫

dr
m + 4πr3P

r(r − 2m) =
∫

dr
1
2r

= 1
2 ln(r) + c . (23)

Gluing it to the external Schwarzschild metric we get

1
2 ln(R) + c = 1

2 ln
(

1 − 2M

R

)
c = 1

2 ln
( 1

R
− 2M

R2

)
,

(24)

where we are keeping R around as a regulator, even though it is technically
infinity. The α(r) function is thus

α(r) = 1
2 ln

(
r

R
− 2Mr

R2

)
. (25)

The metric inside the star is thus

ds2 = −e2αdt2 +
(

1 − 2m

r

)−1
dr2 + r2dΩ2

2

= −
(

r

R
− 2Mr

R2

)
dt2 + 7

4dr2 + r2dΩ2
2 .

(26)

To simplify our lives we redefine the coordinates as r̄ =
√

7
2 r. The spatial part

of the metric becomes
ds2

3 = dr̄2 + 7
4 r̄2dΩ2

2 . (27)

Let us then compute the length of a circumference of fixed radius r̄ = a around
the center of the star. For simplicity, we look at the circumference at the
equator, where θ = π

2 . The relevant line element is

ds = √
gφφdφ = rdφ = 2√

7
r̄dφ (28)

We obtain
C = 2√

7

∫ 2π

0
adφ = 4√

7
πa . (29)

Clearly, the angle corresponding to a full circle around the origin is 4√
7π rather

than 2π. This is a diagnostic of the presence of a conical singularity. Its
presence is an artifact due to the infinite central density in this model.

(d) The radius of the star is defined as the place where P (r) = 0. Obviously,
that happens only at r = ∞ in this model. The conceptual mistake is to
say that the equation of state of such a system remains P = ρ

3 all the way
to infinity, while instead at some point the fermions will have to be treated
non-relativistically, leading to a different equation of state and a finite mass.
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