
RELATIVITY AND COSMOLOGY I
Solutions to Problem Set 7 Fall 2023

1. Hyperbolic Space

(a) Simply plug in the proposed coordinate choices in the hyperboloid constraint and
check that it is verified.

(b) Start from the fact that the metric in embedding space is the 3 dimensional ηµν

and use the formula for how the metric components change under a coordinate
transformation

gµ′ν′ = ∂Xµ

∂xµ′

∂Xν

∂xν′ ηµν . (1)

(c) To compute the length of such a segment, we need to compute

∆s =
∫

segment
ds . (2)

The vector that points in the direction of the segment is ∂z . We thus act with the
metric tensor on two copies of that vector

g(∂z, ∂z) = L2

z2 . (3)

The length of the segment is thus

∆s =
∫ z2

z1

L

z
dz = L ln

(
z2

z1

)
. (4)

A generic line that ends at z2 = 0 has thus infinite length.

(d) Starting with geodesic equation for xρ:

d2xρ

dλ2 = −Γρ
µν

dxµ

dλ

dxν

dλ
(5)

one expands the right hand side to get

−Γρ
µν

dxµ

dλ

dxν

dλ
= −Γρ

µνvµvν

(
dxσ̄

dλ

)2

(6)

The left hand side is bit more complex

d2xρ

dλ2 = d
dλ

((
dxσ̄

dλ

)
dxρ

dxσ̄

)
= d2xσ̄

dλ2
dxρ

dxσ̄
+ dxσ̄

dλ

d
dλ

dxρ

dxσ̄
=

= d2xσ̄

dλ2 vρ +
(

dxσ̄

dλ

)2 d2xρ

dxσ̄2 (7)
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Inserting the geodesic equation for d2xσ̄

dλ2 one gets

d2xσ̄

dλ2 vρ +
(

dxσ̄

dλ

)2 d2xρ

dxσ̄2 = −Γxσ̄

µν

dxµ

dλ

dxν

dλ
vρ +

(
dxσ̄

dλ

)2 d2xρ

dxσ̄2 =

= −Γσ̄
µνvµvν

(
dxσ̄

dλ

)2

vρ +
(

dxσ̄

dλ

)2 d2xρ

dxσ̄2 (8)

Assembling the left and right hand side together one can clean up
(

dxσ̄

dλ

)2
prefactor-

ing both sides

−Γσ̄
µνvµvνvρ + d2xρ

dxσ̄2 = −Γρ
µνvµvν (9)

or equivalently
dvρ

dxσ̄
= −Γρ

µνvµvν + vρ Γσ̄
µνvµvν (10)

The non-vanishing Christoffel symbols in Poincarè half-plane are

Γx
xz = −1

z
, Γz

xx = 1
z

, Γz
zz = −1

z
. (11)

Let’s use z′ = dz
dx

, z′′ = d2z
dx2 . The geodesic equation is

z′′ = −Γz
xx − Γz

zz(z′)2 + z′2Γx
xzz′ (12)

z′′ = −1
z

+ 1
z

(z′)2 − 2
z

(z′)2 (13)

zz′′ + (z′)2 = −1 (14)
(zz′)′ = −1 (15)

zz′ = x0 − x (16)

where x0 is the constant of integration. Continuing

zz′ = x0 − x (17)
1
2
(
z2
)′

= x0 − x (18)
1
2z2 = −1

2(x0 − x)2 + 1
2 l2 (19)

having l2 as another constant of integration. Finally one can clean up the formula
a bit

z2 + (x0 − x)2 = l2 (20)

to recognize that geodesics are circles centered on the z = 0 line. Moreover, for
x0 → ∞ and l → ∞ with l − x0 fixed we get straight lines that are perpendicular
to z = 0 . These are also geodesics.

Alternative solution Let’s show that AdS2 geodesics are straight-lines and semi-
circles centered on the boundary using a more elegant method. Using Poincaré
coordinates, the geodesic equations follow from variation of the action

S =
∫

dλ

(
ż2

z2 + ẋ2

z2

)
. (21)

2



Variation with respect to x and z yield the geodesic equations

d

dλ

ẋ

z2 = 0, z̈ + ẋ2 − ż2

z
= 0. (22)

We can find a first solution by choosing x = const, which fixes z(λ) = c1e
c2λ for

some constants c1 and c2. The only important property of z(λ) is the image, or
what kind of curve will (x, z) span on the Poincaré half-plane. We thus do not
care about the constants c1 and c2, as long as we fix c1 > 0 since that’s the correct
domain of z. In particular, let us choose c1 = c2 = 1 without loss of generality.

γ(λ) =
(

z(λ)
x(λ)

)
=
(

eλ

k

)
, (23)

This is the parametrization of a vertical line of constant x. Let us move on to the
second family of geodesics.
There is an important property of the AdS metric in Poincaré coordinates, which
is that the inversion operation I : xµ → xµ/x2 is an isometry. Another important
property is that isometries map geodesics to geodesics. Therefore, applying the
inversion to the vertical line, we obtain

γ →
(

z′

x′

)
= 1

e2λ + k2

(
eλ

k

)
. (24)

Now the claim is that this parametrizes circles. To see this we compute

z′2 + x′2 = 1
e2λ + k2 = x′

k
⇔ z′2 +

(
x′ − 1

2k

)2
= 1

4k2 , (25)

which is indeed the equation of a circle of radius 1
2k

centered at z′ = 0 (the boundary)
and x′ = 1

2k
. Since z′ > 0 it is only a half circle.

(e) Let’s the write Killing equation for a vector V :

∇µVν + ∇νVµ = 0 (26)

Explicitly the components are

∂xVx − Γz
xxVz = 0 (27)

∂xVz + ∂zVx − 2Γz
xxVz = 0 (28)

∂zVz − Γz
zzVz = 0 (29)

Starting from (29):
∂zVz + Vz

z
= 0 (30)

one gets

Vz = α(x)
z

(31)

where α(x) is to be determined. One shall use that solution to solve (27)

∂xVx − α(x)
z2 = 0 (32)
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which readily integrates to

Vx = A(x)
z2 + B(z) (33)

with A′(x) = α(x). Putting these solutions to (28):

∂x

(
α(x)

z

)
+ ∂z

(
A(x)

z2 + B(z)
)

+ 2
z

(
A(x)

z2 + B(z)
)

= 0

A′′(x)
z

+
(

−2A(x)
z3 + Ḃ(z)

)
+
(

2A(x)
z3 + B(z)

z

)
= 0

A′′(x) = −(zḂ(z) + 2B(z))

As the left side is a function of x only, and the right side is a function of z only,
they must both be equal to a constant. The solution to LHS is

A(x) = ax2 + bx + c (34)

where a, b, c are the other integration constants. The right hand side is then

zḂ(z) + 2B(z) = −2a (35)

solved in general by B(z) = −a − d
z2 . Therefore, the general solution is

Vx = ax2 + bx + c

z2 − a − d

z2 (36)

Vz = 2ax + b

z
(37)

Note that solution depends only on c−d, not on c and d separately. Without loss of
generality one may set d = 0. To get vector components, one multiplies by inverse
metric:

V x = z2Vx = a
(
x2 − z2

)
+ bx + c (38)

V z = z2Vy = 2axz + bz (39)

or

V =
(
a
(
x2 − z2

)
+ bx + c

)
∂x + (2axz + bz) ∂z (40)

This is linear combination of 3 vector fields

P = ∂x , (41)
D = x∂x + z∂z , (42)
K =

(
x2 − z2

)
∂x + 2xz∂z , (43)

the first two represent, respectively, translations in x and dilatations. These make
sense if you look back at how geodesics on the half plane look like. The third one
is a more obscure isometry of hyperbolic space called special conformal trans-
formations. They roughly correspond to performing an inversion xµ → xµ

x2 , then a
translation and then another inversion.
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Let us study the algebra of these Killing vectors through their commutators

[D, P ] = − (∂xx)∂x = −P , (44)

[D, K] =
(

(x∂x + z∂z)
(
x2 − z2

))
∂x+ (45)

+
(

(x∂x + z∂z)2xz

)
∂z+ (46)

−
((

x2 − z2
)

∂xx

)
∂x+ (47)

−
(

2xz∂zz

)
∂z = K , (48)

[P, K] =
(

∂x

(
x2 − z2

))
∂x + ∂x(2xz)∂z = 2D . (49)

2. Lie Derivatives

(a) This follows from the definition

(LV W )ν = V µ∂µW ν − W µ∂µV ν = −(W µ∂µV ν − V µ∂µW ν) = −(LW V )ν . (50)

(b) Transforming the vector coordinates we get

(LV W )ν =V µ∂µW ν − W µ∂µV ν

= ∂xµ

∂xµ′ V
µ′ ∂xρ′

∂xµ
∂ρ′

(
∂xν

∂xν′ W
ν′
)

− ∂xµ

∂xµ′ W
µ′ ∂xρ′

∂xµ
∂ρ′

(
∂xν

∂xν′ V
ν′
)

= ∂xµ

∂xµ′ V
µ′ ∂xρ′

∂xµ

(
∂2xν

∂xν′∂xρ′ W
ν′ + ∂xν

∂xν′

∂W ν′

∂xρ′

)

− ∂xµ

∂xµ′ W
µ′ ∂xρ′

∂xµ

(
∂2xν

∂xν′∂xρ′ V
ν′ + ∂xν

∂xν′

∂V ν′

∂xρ′

)

=V ρ′ ∂xν

∂xν′

∂W ν′

∂xρ′ − W ρ′ ∂xν

∂xν′

∂V ν′

∂xρ′

= ∂xν

∂xν′ (LV W )ν′
.

(51)

(c) Consider the scalar f ≡ W µTµ. Because of the Leibniz rule,

(LV f) = (LV W µTµ) = W µ(LV T )µ + (LV W )µTµ

= W µ(LV T )µ + V ρ∂ρW µTµ − W ρ∂ρV µTµ .
(52)

At the same time, since f is a scalar,

(LV f) = V µW ν∂µTν + V νTµ∂νW µ . (53)
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Comparing, we get

W µ(LV T )µ = V µW ν∂µTν + V νTµ∂νW µ − V ρ∂ρW µTµ + W ρ∂ρV µTµ

= V µW ν∂µTν + W ρ∂ρV µTµ ,
(54)

so
(LV T )µ = V ν∂νTµ + Tν∂µV ν (55)

(d) Use Leibniz’ rule

(LV A)µν = (LV S)µTν + (LV T )νSµ

= (V ρ∂ρSµ + Sρ∂µV ρ)Tν + (V ρ∂ρTν + Tρ∂νV ρ)Sµ

= V ρ∂ρAµν + Aρν∂µV ρ + Aµρ∂νV ρ

(56)

(e) For the Lie derivative of a vector, this follows from what we showed for the com-
mutator of two vectors. For the Lie derivative of a dual vector, we get

V ν∇νTµ + Tν∇µV ν = V ν∂νTµ − Γρ
νµTρV ν + Tν∂µV ν + TνΓν

µρV ρ

= V ν∂νTµ + Tν∂µV ν ,
(57)

where we used the symmetry of the lower indices of the connection.

(f) The metric is a symmetric (0, 2) tensor, and so we can use the identity for (LV A)µν

that we proved before, with covariant derivatives in place of the partial derivatives.

(LKg)µν = Kρ∇ρgµν + gρν∇µKρ + gµρ∇νKρ

= gρνgρα∇µKα + gµρgρα∇νKα

= δα
ν ∇µKα + δα

µ∇νKα

= 2∇(µKν) .

(58)

So we proved that
(LKg)µν = 0 (59)

is equivalent to
∇(µKν) = 0 . (60)

3. Killing Vectors on the Sphere

(a) From the round metric, we immediately read off the first Killing vector, here ex-
pressed in the coordinate basis:

KΦ = ∂φ, (61)

because the metric components do not depend explicitly on φ . Notice that we use
the capital Greek letter Φ to give a name to the Killing vector, not to name its
components. Its components are infact given by

Kθ
Φ = 0 , Kφ

Φ = 1 . (62)
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To find the other two Killing vectors, consider the embedding of the unit sphere in
R3: 

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ

. (63)

We know that rotations around the three axis are isometries of the sphere. KΦ
generates the rotations on the (x, y) plane, which in Cartesian coordinates are

KΦ = −y∂x + x∂y . (64)

Then we also expect to have

Kxz = z∂x − x∂z , Kzy = −z∂y + y∂z . (65)

But (x, y, z) are coordinates in this embedding R3 space. To relate these results to
the coordinates on S2 , we use the inverse transformationsθ = arctan

(√
x2+y2

z2

)
,

φ = arctan
(

y
x

)
.

(66)

Using the chain rule, we get

∂x = ∂θ

∂x
∂θ + ∂φ

∂x
∂φ

= x

r2

√
z2

x2 + y2 ∂θ − y

x2 + y2 ∂φ

= 1
r

cos φ cos θ∂θ − 1
r

sin φ

sin θ
∂φ .

(67)

Analogously,

∂z = −1
r

sin θ∂θ , ∂y = 1
r

sin φ cos θ∂θ + 1
r

cos φ

sin θ
∂φ . (68)

Putting everything together, we get

Kxz = cos φ∂θ − cot θ sin φ∂φ ,

Kzy = − sin φ∂θ − cot θ cos φ∂φ .
(69)

We can also introduce r as an extra auxiliary variable and simply use the
chain rule!! The sphere is a maximally symmetric space. In n = 2, we expect 3
Killing vectors, which are thus given by the set {KΦ, Kxz, Kzy} .

(b) Computing the Lie brackets of these vectors, we get

[KΦ, Kxz] = Kzy ,

[Kxz, Kzy] = KΦ ,

[Kzy, KΦ] = Kxz .

(70)

These are precisely the commutation relations that define the so(3) algebra. In
general, the Killing vector fields of a manifold are the infinitesimal generators of
that manifold’s isometry group.
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4. Maxwell’s Stress Tensor

Varying the action with respect to the metric, we get

δgSM =
∫

dnx

(
−1

4F µνFµν
δ
√

−g

δgαβ
−

√
−g

1
4FρσFµν

δ(gρµgσν)
δgαβ

)
δgαβ

=
∫

dnx

(
1
4F µνFµν

1
2√

−g

δg

δgαβ
−

√
−g

1
4FρσFµν

[
gρµ δgσν

δgαβ
+ gσν δgρµ

δgαβ

])
δgαβ

=
∫

dnx

(
1
4F µνFµν

−g

2√
−g

gαβ −
√

−g
1
4 (F µ

αFµβ + F ν
α Fβν)

)
δgαβ

= 1
4

∫
dnx

√
−g

(1
2F µνFµνgαβ − 2F µ

αFµβ

)
δgαβ ,

(71)

where we used δg
δgαβ = −ggαβ and δgµν

δgαβ = δµ
αδν

β. We read off the stress tensor

Tαβ = − 2√
−g

δSM

δgαβ
= −1

4F µνFµνgαβ + F µ
αFµβ , (72)

as one obtains through Noether’s theorem.

8


