RELATIVITY AND COSMOLOGY 1

Solutions to Problem Set 13 Fall 2022

1. Diffeomorphism invariance and the Conservation of T+

(a)

The variation of the metric is defined as

5gm/($) - g;w(x) - guy(l‘) ) (1)

where we will keep writing arguments explicitly where it will be pedagogically help-
ful. At the same time we have that, under a coordinate transformation

ox'* 9z |,
) = 205 ) )

Now let us focus on an infinitesimal diffeomorphism z/#* = z# — &*. The transfor-
mation becomes

Gun(@) = (55 — 9u6”) (65 — 0,67) (ghp(a) — €10,95(2)) . (3)

where we Taylor expanded the metric on the right hand side around z. Keeping
only terms that are linear in £ we get

9w () = (@) = 0% o () — D€ gp(w) — €0y g (4)
where we have used that g, (z) = g, (7) + O(§) . We thus have
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where, to go from the third to the fourth step, we've used 9,9** = —g** ¢%%' 0. gus: .

Consider a generic action

g = / 4" 2/ =GL (G, D) | (6)

where ® is a generic set of matter fields. Consider how the action changes under an
infinitesimal diffeomorphism.
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where we’ve recognized the stress tensor TH” = \/%—g 525 = -2 9/=90) Now, inte-
g
grating by parts,

5aS = / d"w €,/—gV T . (8)

The theory is diffeomorphism invariant if this vanishes for all infinitesimal &, . That
happens only if V, 7" = 0, as we wanted to prove.

2. Frame Dragging

(a) The sphere of mass M corresponds to a density distribution of p(r) = {25z6(r — R).

The energy momentum tensor is given by 7, = pU,U,. The cartesian entries of
the position vector describing the spherical shell reads

' = (t, Rsinf cos ¢, Rsinfsin ¢, Rcosl) . (9)
The four-velocity is thus
U* = (1,—RQsin 0 sin ¢, R sin 6 cos ¢, 0) , (10)

where we used that the only time dependance is in ¢(t) = Qt and we are neglecting
higher orders in €2 since we are considering a slowly moving mass shell. The cartesian
entries of the stress energy tensor that are linear in the velocity are thus

M
Too = mé(r - R),
Ty = —ORsin 0sin o—0s(r — R) (11)
01 = sin 6 sin e r ,

Too = QR sin 6 cos ¢47]TWR2§<T - R),

(b) Clearly, the T}; terms are quadratic in v.

(¢) Given that T, T}; are the only nonvanishing components, we can repackage the
metric perturbation into a 4-vector A, = hy,. Its equations of motion in the Lorenz

gauge are B
OA, = Ohy, = —167T3, = J, , (12)
mirroring Maxwell’s equations, with J, = —%‘T. We can then define a gravito-
electric and gravito-magnetic field
G, = ! (0; Ao — Qo A;)
_)7, = 4 1410 041 (13)
Hi = (5ijk8jAk) .

The conventional factor of i will become more justified later.!

!Multiple conventions are present in the literature. In this case, as in Carroll’s, fields are rescaled to
provide familiar expression for Lorentz force. However this changes the form of the field equations.



(d) Let’s start with the geodesic equation for the physical velocity

dv’
dt
With Christoffel symbols being

_ 7 v it v
= -, v"v" + o', vt (14)
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one can quickly identify ones vanishing in this particular setup. For example, I, =
0. That is because the metric will be stationary, given that the source T}, is
constant. Further computations give

» 1 1 - -
Iy =TI = _§8ihtt = _Zaihtt = -G, (15)
; 1 1 .
I 2 (Ojhit — Oihje) = —§€iijk (16)

All other symbols only contribute at order O(v?) to the geodesic equation. The only
remaining relevant terms result in

d i . . . — -
dljf =TIy =250 =G+ (v x H);. (17)

The factor of i was chosen to match the form of the Lorentz force.

We want to solve the equations

V2Ao(x) = - 5(r— R),

 4nR?
VA (x) = —KQ sinfsing 6(r — R), (18)
AR
M
2 _ : _
VA (x) = 47TRQsm€cos¢ d(r—R).

where we used the fact that the system is stationary to say that the time derivatives
will vanish. For the time component of A, this is the usual equation for the electric
potential of a charged spherical conductor, with the solution

—M r>R
Ap(x) = { o ’ (19)
-2 0<r<R.
where the correct boundary condition have been imposed. The gravito-electric field
is thus
M
~ 2 >R )
Gy =4 (20)
0 0<r<R.

For the other two components, we solve the associated Poisson equation with the

Green'’s function |
Ai(x) = —/d3x'
4
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In our case,

sin @ sin ¢po(r — R)

Ai(x) = 167T2 RQ / 72 sin Odrdgdg—— = -
5 . sin @ sin ¢d(r — R)
A3() = 1 RQ / 7 sin fdrdddg=— L0
In spherical polar coordinates, we have that
x — x| = :II—ZE'Q—F _/2+Z_Z/2
=X = =)t (g =yt (= 2) 3)

r2 4 /2 — 2r1'[sin O sin @' cos(¢p — ¢') + cos cos '] .

This problem appears in example 5.10 of Griffiths and 5.13 (or 5.6 depending on
the edition) of Jackson. They propose two solutions: one is to go to a reference
frame where x is aligned with the z axis rather than O being aligned with it. This
makes the integral much simpler. The second is to decompose P in spherical
harmonics. We invite you to look at those solutions. The answer is, inside the shell,

4MSQ
Ai(x) = “3r ¥
(24)
Ay(x) = 4M Q
)
This corresponds to a uniform gravito-magnetic field
- SMS)
H=—"-2 25
3R ¢ (25)

Let’s take a stationary observer, so U = 0;. Let’s observe what happens with a
vector V' along his trajectory (or equivalently, how observer would see it changing
in time). V obeys parallel transport equation U*V , V" = 0:

urv, Ve =v,vr =09, v¥ + 1y v*# (26)
Let’s start with ¢ component:
oVi=-TL,Vi=-TLVi=G-V (27)

As in this setup G= 0, nothing exciting happens. For spatial components the story
is different:

—_

. . . > 7 1 ¥ 7
OV' = TV — TV = Gyt S(V x ), = S(V x i), (28)
Plugging in H = V x A = —812z2
4MQ
, ar (29)
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which describes precession with a period of



3. Gravitational Plane Waves

(a)

Consider the spatial components of the Geodesic equation. If the particles start at

rest, % = 0 and what remains is

d*a - (da\?
=—T4 | — : 32
dTQ =0 00<d7'> =0 ( )
The Christoffel symbol is given, at leading order in h, by
o = Lom (200hgy — Oahgy') =0 (33)
00 = 277 (LLON Moo ) =

where we used the gauge condition to say that the terms in the brackets are all
zero. That means a particle at rest feels no acceleration from the passage of a
gravitational wave.

Let us consider slowly moving particles. Then, the four-velocity field is U* =
(1,0,0,0) plus corrections of order h;fl? . But we know that R, ,, is already first
order in h, so in the geodesic deviation formula we can really keep U* = (1,0,0,0).
Then, the relevant entries of the Riemann tensor are

1 1
Ruons = 5(%hys + oDl = 0sdohyg — udohag) = 508hus - (34)

Slowly moving particles are characterized by 7 ~ ¢ and all the Christoffel symbols
vanish for any 7 along the geodesic of the particle around which we are building the
reference frame. The geodesic deviation equation can thus be written as

d?sr 1
T = 550 (35)

Now we specialize to the right handed wave,
0 O
1 —i
-1 —1
0 O

hhy = hg ko™ (36)
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The two components of S* that will be affected by the wave are thus

dt?

E5% = — 2 hpRe[(—iS" — S?)e ]

dt?

(37)

{d“’sl = < hgRe|(S" - iS%)e ]

where we've taken k7 = (w,0,0,w) and 7 = (¢, x,y,0). Taking the real part and
solving this equation with Mathematica (equivalently, using the ansatz provided in
the Problem Set), we get

{51@) L[SH(1 + cos(wt)) — S2sin(wt) + (208 + S3w) 1] (38)
S2(t) =1

[S2(3 — cos(wt)) — S§ sin(wt) + (203 + Siw) t]



where Sj are the initial values of S°(t) and v are the initial values of £5(¢). From
the solution we can see that, for fine tuned initial conditions such that the linear term
in ¢ vanishes, we get circles in the {S*(¢), S?(¢)} plane, as expected from a circularly
polarized wave. The linear term is an artifact due to the unphysical situation we
are studying: this is an eternal gravitational wave, and there is really no frame of
reference at any point in which a set of particles traversed by a gravitational wave
is all at rest at the same time. A more careful treatment would be to turn on
the gravitational wave adiabatically and see how the set of particles behaves. On
Moodle you will find animations made from these equations for all polarizations hg,
hr, hy and hy , where we fine tuned the initial condition of each particle such that
the linear term vanishes.



