RELATIVITY AND COSMOLOGY 1

Solutions to Problem Set 12 Fall 2023

1. The Reissner-Nordstrom Black Hole

As argued in the textbook, for stationary metrics, if ¢""(r) = 0 in some coordinate system
and for some specific value r = rg, then there is a horizon at » = ry . The horizon might
not be apparent in some other coordinate system where ¢"" is never vanishing.
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The horizon is thus where
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Clearly, for |@Q| > M there are no real solutions, and thus there is no horizon. At
the same time, there is a singularity at r = 0, proven by the fact that the scalar
(and thus coordinate invariant) quantity R, ,,R"?’ is singular there. This means
that this spacetime has a singularity that is not covered by an event horizon.

This has solutions

The quantity that we are indicating as M here is really the total energy of the Black
Hole, given by the sum of the rest masses of the particles that were thrown in to
make the black hole plus the work done to add every new charged particle to the
Black Hole. In order to have a total energy M that is lower than the total electric
potential energy, we would need the rest masses of at least some of the particles to
be negative.

We know that this spacetime has a naked singularity and that it is asymptotically
Minkowski (as we take r — 00). That means that the structure of spatial infinity
should look exactly the same as in the Minkowski case. Moreover, since there is
no place where the time coordinate becomes spacelike and the radial coordinate
becomes timelike, the singularity is now a timelike line in the diagram. Look at
Figure 6.3 on Sean Carroll’s book.

The metric for the extremal Black Hole reads
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The horizon is now at r = |@|. Performing the change of variabes ¢ = r — |Q| we
get
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To zoom in near the horizon, let us keep only the leading terms in ¢
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Let us make one last change of variables to ¢ = %2 . We obtain the following metric
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The first term in the brackets is the Lorentzian analogue of the hyperbolic half
plane metric we saw in Problem Set 7. This is AdS space. We can thus say that
the near-horizon geometry of an extremal Black Hole is AdS, x S?, where S? is the
two dimensional sphere in dQ3 .

As we computed before, we have two solutions for M? > ()2
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indicating the presence of an outer and an inner event horizon. In both places, the
coordinates ¢t and r change nature from timelike to spacelike and viceversa. The
singularity is thus timelike just like in the case where Q2 > M?2.

The area of the outer horizon, by spherical symmetry, is given by
A=dmrl =4r(2M? — Q* + 2M\/M? — Q?). (8)

The differential is thus
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Inverting this, we find
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where we identify the surface gravity as
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That is the electric potential because ¢ = % and the total energy of the system is

E=M.

Given the differential form of the mass of the black hole, we can make an analogy
with the first law of thermodynamics

AU = 5Q — sW, (13)

where U is the internal energy of the system, §() is the heat variation and 0W is
the mechanical work. For a reversible process, Q) = T'dS

AU =TdS — §W . (14)



From the formula for the entropy of a black hole we have dA = 4dS. The formula
for the variation of the mass is thus

dM = dS — ®,dQ (15)
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We thus identify the Temperature
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Notice that an extremal Black Hole, with M = @), has zero temperature. Summa-
rizing, the analogy with thermodynamics works as follows
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2. Penrose Diagram of de Sitter and Anti-de Sitter

(a) We are asked to show what is the explicit form of the metric on S®. For general
dimensions, angular coordinates w’ are chosen such that the cartesian constraint for
the coordinates on the sphere

d (W) =1 (18)
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is satisfied. The standard choice is to construct these coordinates by taking
w! =cos b,
w? =sin #y cos by,
w? =sin 6, sin 6, cos b5,

(19)

wi ™l =sin6; - - -sinfy_ocos Oy,

wt =sinb, ---sinfy_osinby_; ,
with ranges 0 < ¢; < « for all angles except the last one 0 < ;1 < 27. You can

check that (19) satisfy (18). Taking the differential and collecting the coefficients
of each df? term, we get
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In particular, for S we get

dQ3 = d6? +sin? 0 de* + sin? fsin® ¢ dy>. (21)

(b) To find the metric in the new coordinates we compute the differential of coshr =
1
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The metric is thus ) )
Js? —dT™= 4 dQj .
cos?T
Once again we see that de Sitter is conformally related to the Einstein static uni-
verse. This time, though, the coordinates run independently, covering a stripe

between T'= —7 and T' = 7. Let us write the metric expliciting the dependency
on one of the angles

(23)
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The ranges of values taken by 6 and T are § € (0,7) and T € (—g, g) . This differs
from the case of Minkowski, where we found that there was an extra constraint

|T| < ™ — R, leading to the famous triangle shape.

Because that constraint |7'| < m — R is not there in de Sitter, the Penrose diagram
will be shaped like a square. The left side of the square, at § = 0 is a point which
we identify as the North pole of the S® sphere. The right side at § = 7 is instead
the South pole. Observers in these two places will never be able to interact with
each other.

By drawing light cones, it is straightforward to realize that there is no observer in
de Sitter that has the full spacetime in its past. That means there can be multiple
observers that never meet.

The event horizon in de Sitter is an observer dependent concept. Consider an
observer at rest on the South pole, without loss of generality. Draw her past light
cone at every point in time. The union of all such light cones will be a right triangle
with a diagonal that spans from the North pole at § = 0 to the South pole at § = 7.
This diagonal will be the observer’s event horizon, because no signal from beyond
that line will ever reach the observer.

Under the suggested change in coordinates we get
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The metric is thus
1 .
ds® = p— X(—dt2 + dyx? + sin? xdQ3), (26)

with x € (0, 7). The spacetime in the brackets is once again Einstein’s static uni-
verse. This time, the coordinates cover half of it: the time coordinate runs from
—o0 to oo, while the angular coordinate x runs only from 0 to 7 rather than to .

The Penrose diagram looks like an infinite rectangle. The left side is the origin at
X = 0. Instead, x = § corresponds to spatial infinity, p — oo, and in this spacetime
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it is timelike.

An extra bonus for the interested reader: the timelike nature of AdS’s spatial infinity
is the key to the AdS/CFT correspondance, a conjectured duality between quan-
tum gravity in asymptotically n-dimensional AdS spacetimes and Conformal Field
Theories (without dynamical gravity) that live on the (n — 1)-dimensional cylin-
der at spatial infinity. The statement of the correspondance is that all observables
computed at spatial infinity in quantum gravity in n-dimensional asymptotically
AdS spacetimes give the same results as observables computed in specific CFTs on
the n dimensional surface of the cylinder. While it has still not been proven, every
case that can be checked respects this duality. The fact that the AdS/CFT corre-
spondance relates theories of different dimensions, with gravity and without gravity,
gives the name of holography to this duality.

Acting with metric on d% gives
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As time is a cyclic coordinate, g—i = F cos?y. Transforming the equation

a2
(;;) = E?cos* y — cos® x (28)
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This leads to differential equation
dx 2 1
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Therefore, for every physical energy, F > 1, there exist a turning point cosy = 1/FE.
To investigate further, let’s integrate:

E cos x
+ = 1
/\/E20052x— 1dX /dt (31)

For range x € [0, cos™!(3)),This results in'

E'sin
tant = X (32)
VE?cos? y — 1
Which is an expression only valid due to ambiguity of trigonometric functions. Note
that the turning point is (t =2, X= 005*1(%» — and the t-coordinate of the point
does not depend on F.

Assembling paths from origin to turning point and back gives surprising conclusion
— every geodesics beginning in origin comes back to y = 0 after time At = 7, and,
as the space is maximally symmetric, this applies to every trajectory?.

Via substitution u = siny, (1 — u?) = cos? x, du = cos ydx
’Imagine throwing a stone and having it always hit your head after 3.14s, regardless of your effort.



On the other hand, light-like geodesics follow the equations for d7 = 0, so
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On range t € {0, g), they follow (not surprising, given the nature of procedure of

creating a Penrose diagram) the path of

t=x

or, equivalently,
sin y
\/cos?
where one can see light-like geodesics is a limit of time-like with E'lim co. Careful

reader may now backtrack to geodesics in Schwarzchild metric and other examples
to see that’s a common theme.
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To complete the discussion, see the attached plots of (compactified) AdS geodesics
with varying integration constant E':
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—E=1.02
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