RELATIVITY AND COSMOLOGY I

Problem Set 7 Fall 2023

1. Hyperbolic Space

Maximally symmetric spaces with Euclidean signatures are planes, spheres or hyperboloids (and their higher dimensional counterparts). Consider a two dimensional hyperboloid \mathbb{H}^2 embedded in Minkowski \mathbb{M}^3 , through the constraint¹

$$-(X^{0})^{2} + (X^{1})^{2} + (X^{2})^{2} = -L^{2}, X^{0} > 0, (1)$$

where X^{μ} are the coordinates in \mathbb{M}^3 .

(a) Verify that two possible choices of coordinates on \mathbb{H}^2 that solve this constraint are

$$\begin{cases}
X^{0} = L \frac{1+x^{2}+z^{2}}{2z}, \\
X^{1} = L \frac{x}{z}, \\
X^{2} = L \frac{1-x^{2}-z^{2}}{2z}.
\end{cases}, \qquad
\begin{cases}
X^{0} = \frac{L}{\cos \rho}, \\
X^{1} = L \cos \theta \tan \rho, \\
X^{2} = L \sin \theta \tan \rho.
\end{cases} \tag{2}$$

(b) Show that the metric in these two coordinate systems is

$$ds^{2} = L^{2} \frac{\mathrm{d}\rho^{2} + \sin^{2}\rho \, \mathrm{d}\theta^{2}}{\cos^{2}\rho}, \qquad \rho \in [0, \frac{\pi}{2}) \text{ and } \theta \in [0, 2\pi)$$
$$ds^{2} = L^{2} \frac{\mathrm{d}x^{2} + \mathrm{d}z^{2}}{z^{2}}, \qquad x \in \mathbb{R} \text{ and } z \in (0, \infty).$$

$$(3)$$

The first one defines the Poincaré disk model, of which you probably saw artistic renditions by $M.C.\ Escher$. In those coordinates, the total hyperbolic space is compactified to a disk. The second coordinate system is called **Poincaré coordinates**, or the Poincaré half-plane.

(c) Show that the length of a segment on the half plane with fixed x that starts at z_1 and ends at z_2 is

$$\Delta s = L \ln \left(\frac{z_2}{z_1} \right) \,. \tag{4}$$

What does this mean for straight paths on the (x, z) plane that reach the boundary at z = 0?

(d) Let's parameterize a curve using a coordinate $x^{\bar{\sigma}}$ instead of an affine parameter λ . Using the chain rule $\frac{\mathrm{d}}{\mathrm{d}\lambda} = \frac{\mathrm{d}x^{\bar{\sigma}}}{\mathrm{d}\lambda} \frac{\mathrm{d}}{\mathrm{d}x^{\bar{\sigma}}}$, show that the geodesic equation for such a curve is

$$\frac{\mathrm{d}v^{\rho}}{\mathrm{d}x^{\bar{\sigma}}} = -\Gamma^{\rho}_{\mu\nu}v^{\mu}v^{\nu} + v^{\rho}\Gamma^{\bar{\sigma}}_{\mu\nu}v^{\mu}v^{\nu} \,, \tag{5}$$

where $v^{\mu} = \frac{\mathrm{d}x^{\mu}}{\mathrm{d}x^{\bar{\sigma}}}$. Write this equation for z(x) and find the geodesics on the Poincaré half-plane. You should find that geodesics are straight lines perpendicular to the boundary and semicircles centered on the boundary.

¹Euclidean hyperbolic spaces of dimension n can only be isometrically embedded in \mathbb{R}^{n+2} or in \mathbb{M}^{n+1} .

(e) Find the Killing vectors of hyperbolic space. Show that they can be written as linear combinations of the following vectors

$$P = \partial_x, \qquad D = x\partial_x + z\partial_z, \qquad K = (x^2 - z^2)\partial_x + 2xz\partial_z.$$
 (6)

What is their algebra under commutation?²

2. Lie Derivatives

In this exercise we are going to introduce the concept of **Lie derivative** - a differential operator that satisfies the Leibniz rule: $\mathcal{L}_V(AB) = A(\mathcal{L}_V B) + (\mathcal{L}_V A)B$. Consider vectors V and W, dual vectors S and T and a scalar function f. The Lie derivative is defined as

$$\mathcal{L}_V f \equiv V^{\mu} \partial_{\mu} f \,, \qquad (\mathcal{L}_V W)^{\nu} \equiv V^{\mu} \partial_{\mu} W^{\nu} - W^{\mu} \partial_{\mu} V^{\nu} \,, \tag{7}$$

where $\mathcal{L}_A B$ means Lie derivative of B with respect to A. For a generic tensor T, the Lie derivative $\mathcal{L}_V T$ essentially codifies the change of T along V.

(a) Show that

$$(\mathcal{L}_V W)^{\alpha} = -(\mathcal{L}_W V)^{\alpha} \,. \tag{8}$$

- (b) Show that $(\mathcal{L}_V W)^{\alpha}$ transform like the components of a vector under coordinate transformations.
- (c) Show that³

$$(\mathcal{L}_V T)_{\alpha} = V^{\mu} \partial_{\mu} T_{\alpha} + T_{\mu} \partial_{\alpha} V^{\mu} \,. \tag{9}$$

(d) Consider a tensor $A_{\mu\nu} = S_{\mu}T_{\nu}$. Show that

$$(\mathcal{L}_V A)_{\mu\nu} = V^{\rho} \partial_{\rho} A_{\mu\nu} + A_{\rho\nu} \partial_{\mu} V^{\rho} + A_{\mu\rho} \partial_{\nu} V^{\rho} . \tag{10}$$

- (e) Assume that you have a metric $g_{\mu\nu}$ and that ∇_{μ} is a covariant derivative with respect to the Levi-Civita connection. Show that in (7) and (9) you can equivalently write ∂_{μ} or ∇_{μ} .
- (f) Show that Killing's equation

$$\nabla_{(\mu} K_{\nu)} = 0, \qquad (11)$$

is equivalent to

$$(\mathcal{L}_K g)_{\mu\nu} = 0 \tag{12}$$

A short comment: the Lie derivative of a vector field W with respect to another vector field V is also referred to as the Lie bracket between the two vectors, and is essentially given by the commutator [V, W]. The space of vector fields forms a Lie algebra with respect to the Lie bracket.

²**Hint**: A maximally symmetric *n*-dimensional space has $\frac{n}{2}(n+1)$ symmetries.

³**Hint**: Form a scalar with T_{μ} and some auxiliary vector.

3. Killing Vectors on the Sphere

(a) Find the Killing vectors of S^2 with metric⁴

$$ds^2 = d\theta^2 + \sin^2\theta d\phi^2. \tag{13}$$

(b) Verify that the Killing vectors you found satisfy an algebra with respect to the Lie bracket that is isomorphic to $\mathfrak{so}(3)$.

4. Maxwell's Stress Tensor

Consider the minimally coupled Maxwell action with no sources

$$S_M[g_{\mu\nu}, A_{\mu}] = \int d^n x \sqrt{-g} \left(-\frac{1}{4} F^{\mu\nu} F_{\mu\nu} \right) .$$
 (14)

Use functional differentiation to compute the associated stress tensor,

$$T_{\mu\nu} = -\frac{2}{\sqrt{-g}} \frac{\delta S_M}{\delta g^{\mu\nu}}, \tag{15}$$

⁴**Hint**: Embed the sphere in \mathbb{R}^3 and consider rotations.