RELATIVITY AND COSMOLOGY 1

Problem Set 6 Fall 2023

1. The Expanding Universe

At the largest scales, our universe is in first approximation uniform, homogeneous and
isotropic in space. The line element on such scales can be written as

ds® = —dt* + a*(t) (da:2 +dy® + dz2) : (1)

where a(t) is called the scale factor, and it sets the rate of expansion of the universe.
Metrics with such a form are called Friedmann-Robertson-Walker (FRW) metrics.

(a) Show that the non-vanishing Christoffel symbols for this metric are
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where dots are derivatives with respect to coordinate time ¢ .

The energy of a particle with momentum p* as measured by an observer with four-velocity
Ul is given by

E = —p, UL (3)

obs *
For a massive particle, p* = m‘{f—:. For a photon, proper time vanishes and there is no
unique parametrization of its geodesics. The requirement p* = % fixes the normalization
of A\ and once an initial condition is chosen, the geodesic equation uniquely defines the
rest of the curve.

(b) Compute the energy of a photon in an expanding universe as measured by an ob-
server at rest.!

We can model the matter and energy contents of the universe as a homogeneous fluid.
The stress energy tensor will thus be given by

™ = (p + P)UguidUguid + PgMV ) (4)
where p and P are respectively the energy density and the pressure of the fluid.

(c) Show that conservation of energy and momentum V, 7" = 0 in the rest frame of
the fluid implies

p:—3g(p+P), P =0. (5)

(d) Consider an equation of state of the form P = wp with w being a constant. Show
that in that case
p X a—3(1+w) ) (6)

Can you interpret the physics of your results in the casesw =0, w = z and w = —17
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'Hint: start from the condition that its path be null ds?> = 0.



2. Geodesic Deviation

In flat space, parallel geodesics stay parallel. In a curved space this is not true, and
the Riemann tensor has the role of quantifying the geodesic deviation from parallelism.
Consider a one-parameter family of neighboring geodesics v,(t), where ¢ is their affine
parameter and each value of s € R corresponds to a different geodesic. This family of
geodesics defines a surface x#(s,t). It is natural to consider the tangent vectors T* and
the deviation vectors S* defined through

T“:% Su_@x“

pral =05 (7)

We want to quantify the deviation from parallelism, or in other words the tendency of
two geodesics to grow apart as we move along ¢ . It makes sense to define for that purpose
the relative velocity of geodesics

Vi = (VpS)t =TrV 5", (8)
and the relative acceleration of geodesics
Al = (Vp V)R =TPV VI, (9)
(a) Argue that [T, S] = 0.

(b) Use this to show that?
AV = R TVTPST (10)

This is the geodesic deviation equation.

3. The Riemann Tensor

Using that
Rpauu = _Rpauu ) Rpauu = _Rapuu ) Rpouy + Rpumr + Rpuau =0 ) (11)

show that?
Rpoiv = Ryvpo - (12)

*Hint: You need to add and subtract some terms such that [V,, V,|T* = R*, ' T" appears.
3Hint: Start from Ryopv + Rppvo + Rpvop = 0 and its permutations.
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4. The Curvature of S3

Consider the metric for S? in (¢, 0, ¢) coordinates
ds? = r?dy? + r? sin® ¢ (d6? + sin® 0d¢?) , (13)
where r is the radius of the sphere. In what follows, we will set » = 1 for simplicity.

(a) Compute the Christoffel coefficients of this metric by imposing that the variation of

dxt dx
v 14
"2 / 9y an (14)
with respect to each coordinate should vanish. Why is this a sensible thing to do?

(b) Compute the components of the Riemann tensor, the Ricci tensor and the Ricci
scalar. *

(c) Verify that
R

= 7_1)<9pugau - gpugau) ) (15)

Bpo n(n

as expected from any maximally symmetric space.

(d) Argue that all the components of the Weyl tensor
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>9p[u9V]UR . (16)

should vanish in this space.

4Hint:Use the symmetries from Problem 3 to reduce the amount of computations needed. Remember

that the Riemann tensor has ”—(n — 1) independent components, where n is the dimension of the

12
manifold.



