RELATIVITY AND COSMOLOGY 1
Problem Set 5 Fall 2023

1. Christoffel Symbols for a Diagonal Metric
Consider the formula for Christoffel symbols
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(a) Show that, for a diagonal metric,
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where A # ji # v and no Einstein summation is implied in all these equations.
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These will be useful formulas to quickly compute the Christoffel symbols of diagonal
metrics.

2. Geodesics

a) An affine parameter is any A that is linearly related to proper time A\ = ar + b.
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Geodesics x#(\) parametrized by affine parameters satisfy the equation
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Show that, for a non-affine parameter a = (), the geodesic equation becomes
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and find f(a()N)).

(b) Consider a geodesic z#(\) parametrized by an affine parameter A. Call V = V*0,
the tangent vector to the geodesic. Show that

VAV, VY =0 (5)

is the geodesic equation.

3. Geodesics on S?

Consider a 2-sphere with coordinates (6, ¢) and metric

ds® = df? + sin® fd¢? . (6)
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(a) Write down the geodesic equation in this coordinate system using affine parametriza-
tion.

(b) Show that lines of constant longitude ¢ are geodesics, and that the only line of
constant latitude that is a geodesic is the equator (0 = 7).

(c) Take a vector with components V# = (1,0) and parallel transport it once around a
circle of constant latitude. What are the components of the resulting vector, as a
function of the latitude 67

4. Divergence and Laplacian

Show that the following formulas hold for a generic metric:

(a) Divergence of a vector

v,V = \/L?’aﬂ(\/Hw) . (7)

(b) Laplacian on a scalar
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