
RELATIVITY AND COSMOLOGY I
Problem Set 11 Fall 2022

1. The Penrose Diagram of Minkowski

Penrose diagrams allow us to compactly visualize the entirety of a spacetime while keeping
its causal structure manifest. In order to achieve that, they are derived by transforming
your starting metric to coordinates that have finite ranges and in which light rays propa-
gate at 45 degrees. In this exercise you will be guided towards a derivation of the Penrose
diagram of Minkowski space.

(a) Consider Minkowski space in spherical coordinates

ds2 = −dt2 + dr2 + r2dΩ2 . (1)

A naive guess for some good compact coordinates would be

T̄ = arctan t , R̄ = arctan r . (2)

Why is this a bad choice to build our Penrose diagram?

(b) Instead, start by performing the following coordinate transformation

u = t − r , v = t + r . (3)

Write down the metric of Minkowski space in these coordinates. What are their
ranges?

(c) Now go to the so-called Penrose coordinates

U = arctan u , V = arctan v . (4)

What is the range of U and V ? Write down the metric again.1

(d) Finally, go to the coordinates

T = V + U , R = V − U . (5)

What is their range? You should be able to write the metric in these coordinates as

ds2 = ω(T, R)
[
−dT 2 + dR2 + sin2 RdΩ2

]
, (6)

for some function ω(T, R) you have to find. What is the manifold described by
the metric in the square brackets? How do radial light rays propagate in these
coordinates?

(e) Represent on a diagram the spacetime in the square brackets in (6). The ranges of
R and T are important. Draw surfaces of constant r and constant t. How do null
geodesics look like on this diagram?

1Hint:It is going to simplify the following steps if you realize that the coefficient of dΩ2 in these
coordinates can be written as sin2(V −U)

f(U,V ) , with f(U, V ) some function you will calculate.
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2. A Hamiltonian Approach to Geodesics

During the lectures you’ve seen that geodesics can be found by extremizing the following
action:

S = 1
2

∫ (
1
ξ

gµν(x)ẋµẋν − ξm2
)

dλ =
∫

L(xµ, ẋµ, ξ)dλ ,

where ẋµ = dxµ

dλ
. In classical mechanics, a system can be equivalently described by a

Lagrangian (in terms of positions and velocities) or a Hamiltonian (function of positions
and momenta). In this problem you will investigate conveniences and inconveniences of
the Hamiltonian approach to the geodesic equation.

(a) The momentum pµ conjugate to the variable xµ is given by pµ = ∂L
∂ẋµ . Compute the

Legendre transform of L(x, ẋ, ξ):

H(x, p, ξ) = pµẋµ − L

Note: The transformation in ξ is trivial, as pξ = 0

(b) Show that the Hamilton equations of motion ẋµ = ∂H
∂pµ

, ṗµ = − ∂H
∂xµ are equivalent

to the geodesic equations.

(c) Find the equations of motion for ξ. Prove that, for consistency, the value of H must
be 0 on-shell. What are the constraints imposed on the momenta? How do they
translate to constraints on the velocities?

(d) Prove that, if the metric is not a function of the coordinate xµ̄, pµ̄ is a conserved
quantity.

(e) Let us introduce the Poisson brackets:

{a, b} = ∂a

∂xµ

∂b

∂pµ

− ∂a

∂pµ

∂b

∂xµ

Show that, for a function f(x, p), the equations of motion imply ḟ = {f, H}.

(f) Consider a vector field Kµ = Kµ(x) and the quantity f(x, p) = pµKµ. Show that
this is a conserved quantity if and only if Kµ is a Killing vector.
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3. The vielbein formalism

In this exercise we will introduce a different formalism for general relativity that can
simplify many computations.

(a) Argue that the metric gµν(x) can be written

gµν(x) = ea
µ(x)eb

ν(x)ηab, (7)

where ηab is the Minkowski metric. (Hint : symmetric matrices can be diagonalized.)
The fields eµ

a(x) are called vielbeins or frame fields. The indices µ, ν are the usual
spacetime indices and the indices a, b are called the frame indices. We define their
inverses by switching the place of the indices as

eµ
aea

ν = δµ
ν , ea

µeµ
b = δa

b . (8)

(b) Show that the vielbeins are not uniquely defined. There is a transformation

e′a
µ (x) = T a

b(x)eb
µ(x) (9)

leaving their defining equation invariant. What is T a
b ?

(c) We can think of the fields ea
µ as the components of a 1-form ea. Show that

ds2 = eaebηab ≡ eaea, . (10)

(d) We can define frame vector components as V a ≡ ea
µV µ. The covariant derivative in

that basis is written
∇µV a = ∂µV a + ω a

µ bV
b, (11)

where ω a
µ b is called the spin connection. Show that

Γν
µλ = eν

a∂µea
λ + eν

aeb
λωa

µ b, ω a
µ b = ea

νeλ
b Γν

µλ − eλ
b ∂µea

λ. (12)

(e) Defining the connection 1-form ωa
b ≡ ω a

µ bdxµ, first show that, using ∇µηab = 0, ωab

are antisymmetric in a, b. Then show that

dea + ωa
b ∧ eb = ea

ρea
λΓλ

νµdxµ ∧ dxν (13)

If we use the Levi-Civita connection we get

dea + ωa
b ∧ eb = 0. (14)

This is known as the first structure equation. Now we define the curvature 2-form
Ra

b ≡ ea
λeρ

bRλ
ρµνdxµ ∧ dxν , show that

Ra
b = dωa

b + ωa
c ∧ ωc

b, (15)

which is known as the second structure equation.

(f) We will now see how to use all the formalism we just developed. Consider the FLRW
metric

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2). (16)
Use (10) to compute the vielbeins ea

µ of that metric. Then use the first structure
equation (14) to compute the components of the spin connection ωa

b (remember
that ωab is antisymmetric in a, b). Then use the second structure equation (15)
to compute the Riemann tensor and write down the Einstein’s equations with the
stress-energy tensor of a perfect fluid. You will get the Friedmann equations.
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