Relativity and Cosmology I

Exam Solutions - 16/01/2023

Do not worry about your difficulties
in Mathematics. I can assure you
mine are still greater.

Albert Einstein



1. Surface

(a) The length of a generic curve 7 : (r(\), ¢(\)) is given by
uzﬂwz/w$mw(g)+%ww@®
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In this case we are interested in the curve r(\) = R and ¢(\) = A.
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(b) To compute the area inside the curve, we use the fact that the correct invariant area
element is given by € = /|g|dr A d¢. We get
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we change variables to p = and we get

(¢) The distance from r = 0 to the curve C' is given by
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Given the hint in the exercise, we realize that the change of variables that will make
our life simpler is = = sinh(z). The integral becomes
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LR:a/ /14 sinh® 2 cosh « das:a/ cosh?z dx . (6)
0

[e=]

Using the hint, we obtain
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where we used sinh(2x) = 2 cosh(x) sinh(z) .



(d) A paraboloid is defined through the equation
z=c(x® +y*) = cr?. (8)
The metric in R? is
ds* = dr* + r?d¢?® + dz2?
= dr? 4 r2d¢? + (2erdr)® (9)
= (1+4c%?) dr? + r*dg”
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To match with the given metric, we need ¢ = 5-, so that the paraboloid is

% 4 y2
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2. Black Hole in 241 dimensions

(a) As the Riemann tensor components are provided, the Ricci scalar may be computed
by rising and lowering indices along with utilizing its symmetries. The metric is
diagonal, so the inverse components are
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With these, the candidate may pursuit evaluation of Ricci tensor components.
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The off-diagonal components are 0, as there are no non-zero Riemann tensor com-
ponents R’ with j # k.




Computing the Ricci scalar:

R=g"Ryy+ "Ry + 9" R,y =
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So, finally, the tensor components and scalar are
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(b) Let’s start by finding the components in terms of provided solution. First, let’s

eliminate g(r) and ¢'(r) = —jf;((:))
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Careful observer shall notice that R, = —l%gw, = %Rg,w. Plugging the result into
Einstein equation
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The energy-momentum tensor proportional to the metric may come from non-zero
cosmological constant (A = —;—2) or vacuum energy or inflationary potential (see

first question of the practice exam).

Let’s start with time-like geodesics. As in lectures, this may be done by computing
ds?*(9;,0;) = —1 and using constant of motion.
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Expanding f(r), g(r) and marking % by dots:
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As t, ¢ are cyclic coordinates, one can associate constants of motion to them
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which give the equation of motion
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Reshuffling the terms give
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The derivation for null geodesics goes similarly, by starting with ds?(9y, dy) = 0 and

gives the equation
i r?—ry L?  E?
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The potentials may be read of these equations:
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Light-like: V(r) = T 2l2rh —
,




(d) For circular orbits one needs 7 = 0 and # = 0. This corresponds to V(r) = £ and

2
V'(r) = 0.
As E is (arbitrary) constant of motion, only the second condition is non-trivial.
Evaluating V'(r):

r4+L2r}2L

o for timelike geodesics
Vi) =1 24
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7 for null geodesics

Both of these derivatives are non-negative for r > 0. Therefore, there are no circular
orbits in this space.

(e) Unaccelerated observers move along timelike geodesics. These are described by (22)

which may be transformed to
dr N

Firstly, notice that the timelike geodesic with maximal proper time (outside the
horizon) starts at the horizon and ends at the horizon because there is no timelike
geodesic that can stay outside the horizon forever due to V'(r) > 0. Therefore,

Tmax d
Toutside(Eu L) = 2/ —r
r VE? =2V (r)

where 7,4, is the turning point determined by E? = 2V (74z)-

(26)

Secondly, let us argue that T, siqe(E, L) for fixed E is maximal for L = 0. Given
— V/E, the steeper the potential, the quicker it reaches the

an initial velocity r
r=rp

turning point because # = —V’(r). In the present case, the potential V(r) =
2 .2

o (1 + f—;) and its derivative (24) is growing strictly monotonically with L.

Therefore, the maximal time trajectory corresponds to L = 0. !

This leaves the potential

2 2
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This is quadratic, With solution being simple harmonic motion, r = Asin (wT)

where A = /5 22T %, and w = % If the observer is initially at point » = ry, the
initial time is 79 = %aresin(%’l), and the time at which it reaches turning point is
71 = 5. Therefore, the total proper time spent on such motion outside the horizon
is Toutsize = 2(71 — 7). Finally 79 decreases with increasing F, with limit of 0 as

E — o0, giving the maximal answer 7T,,isiqe = 2(%[ —0) = nl.

To summarize, the timelike geodesic of maximal proper time outside the horizon
describes the motion of an observer that starts at the horizon with a very large
outgoing radial velocity, then the observer moves away from the horizon (to a very
large distance) until it stops and falls back in after proper time

Toutside = .

!This can be argued more carefully as follows. Denote the velocity by v(r) = \/E2 — 2V (r). Then,
outeide = 2frmar vdr Now consider the difference Toutside (L1) — Toutside (L2) 2f . Ul(rr) 2fh vj(”r) for
fixed F. Slnce the potentlal increases with L, the turning points obey r1 > 1o for L1 < Ls. Then, using
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Both terms are positive. The first is obvious and the second follows from V; (r —or) < Vi(r).



3. Explosion

(a)

To compute the quadrupole moment, we start from the energy momentum tensor.
before explosion: T, Z) = M6 (& — ),

28
after explosion: T%(t, &) Z mad (T — Ty — T,t) | (28)

where M = " _,m, and &, is the initial position of the isolated body. The
quadrupole moment is instead given by

before explosion: I;(t) = Mxha}
(29)

after explosion:  I;;(t) = Y ma(zo + vat)' (xo + vat)’
a=1

We compute the second derivative of the quadrupole moment after the explosion
t) =2 mguvl. (30)
a=1

It clearly does not depend on the initial position of the body. Notice that this is
true even during the explosion. To see that, we can write

)= Z o (1)1 1) (31)
which leads to
=2 Z_jl it (£)29 (£) + Z ma (i ()2 (1) + # ()2 (1)) (32)

Now, shifting by a translation x,(t) — x,(t) + o, we have
L (t) — Lij(t) + b FI(t) + b Fi(t) = I;(t) (33)

because F(t) = Y.I'_, myi,(t) = 0 since there is no external force applied to the
system.
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=4 mamp|T,? 0| cos® O
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n
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The upper bound is saturated when 6,, = 0, 7, which means pieces of the bomb are
ejected along two opposite directions.

\]



(d) To make this estimate, start from the expression for the power emitted in gravita-
tional waves

G |dJy; d*J9 I? E?
P=—— - ~—G—=~-G—=. 35
5 < dt3  dt3 > T2 T2 (35)
The energy emitted in gravitational waves is thus
G E?
Eqw = —— ~ 107, 36
=2 (30)

In the last expression, it was important to reintroduce the speed of light ¢ to restore
standard units.



