
Relativity and Cosmology I

Exam Solutions - 16/01/2023

Do not worry about your difficulties
in Mathematics. I can assure you
mine are still greater.

Albert Einstein
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1. Surface

(a) The length of a generic curve γ : (r(λ), φ(λ)) is given by

Lγ =
∫

γ
ds =

∫
dλ

√√√√grr(λ)
(

dr

dλ

)2

+ gφφ(λ)
(

dφ

dλ

)2

=
∫

dλ

√√√√(1 + r2(λ)
a2

)(
dr

dλ

)2

+ r2(λ)
(

dφ

dλ

)2

.

(1)

In this case we are interested in the curve r(λ) = R and φ(λ) = λ .

LC =
∫ 2π

0
Rdφ = 2πR . (2)

(b) To compute the area inside the curve, we use the fact that the correct invariant area
element is given by ε =

√
|g|dr ∧ dφ. We get

AC =
∫ √

|g|drdφ = 2π
∫ R

0

√
1 + r2

a2 rdr (3)

we change variables to ρ = r
a

and we get

AC = πa2
∫ R

a

0
2ρ
√

1 + ρ2dρ = 2
3πa2(1 + ρ2) 3

2

∣∣∣∣R
a

0
= 2πa2

3

(1 + R2

a2

) 3
2

− 1
 . (4)

(c) The distance from r = 0 to the curve C is given by

LR =
∫ R

0

√
grrdr =

∫ R

0

√
1 + r2

a2 dr . (5)

Given the hint in the exercise, we realize that the change of variables that will make
our life simpler is r

a
= sinh(x). The integral becomes

LR = a

sinh−1
(

R
a

)∫
0

√
1 + sinh2 x cosh x dx = a

sinh−1
(

R
a

)∫
0

cosh2 x dx . (6)

Using the hint, we obtain

LR = a
(

x

2 + 1
4 sinh(2x)

) ∣∣∣∣sinh−1
(

R
a

)
0

= a

2

(
sinh−1

(
R

a

)
+ R

a
cosh

(
sinh−1

(
R

a

)))

= a

2

sinh−1
(

R

a

)
+ R

a

√
1 + R2

a2


(7)

where we used sinh(2x) = 2 cosh(x) sinh(x) .

2



(d) A paraboloid is defined through the equation

z = c(x2 + y2) = cr2 . (8)

The metric in R3 is
ds2 = dr2 + r2dφ2 + dz2

= dr2 + r2dφ2 + (2crdr)2

=
(
1 + 4c2r2

)
dr2 + r2dφ2

(9)

To match with the given metric, we need c = 1
2a

, so that the paraboloid is

z = x2 + y2

2a
. (10)

2. Black Hole in 2+1 dimensions

(a) As the Riemann tensor components are provided, the Ricci scalar may be computed
by rising and lowering indices along with utilizing its symmetries. The metric is
diagonal, so the inverse components are

gtt = − 1
f(r) , grr = 1

g(r) , gφφ = 1
r2 . (11)

With these, the candidate may pursuit evaluation of Ricci tensor components.

Rrr = Rφ
rφr + Rt

rtr = g′

2rg
+ 1

4f 2g

(
ff ′g′ + g(f ′2 − 2ff ′′)

)

Rtt = Rφ
tφt + Rr

trt = Rφ
tφt + grrRrtrt = Rφ

tφt + grrgttR
t
rtr =

= f ′

2rg
− f

g

1
4f 2g

(
ff ′g′ + g(f ′2 − 2ff ′′)

)
= f ′

2rg
− 1

4fg2

(
ff ′g′ + g(f ′2 − 2ff ′′)

)

Rφφ = Rt
φtφ + Rr

φrφ = gttRtφtφ + grrRrφrφ = gφφ

(
gttRφ

tφt + grrRφ
rφr

)
=

= r2
(

− 1
f

f ′

2rg
+ 1

g

g′

2rg

)
= r

2g

(
g′

g
− f ′

f

)

(12)

The off-diagonal components are 0, as there are no non-zero Riemann tensor com-
ponents Ri

jik with j 6= k.
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Computing the Ricci scalar:

R = gφφRφφ + gttRtt + grrRrr =

= 1
2rg

(
g′

g
− f ′

f

)
+

− 1
f

(
f ′

2rg
− 1

4fg2

(
ff ′g′ + g(f ′2 − 2ff ′′)

))
+

+ 1
g

(
g′

2rg
+ 1

4f 2g

(
ff ′g′ + g(f ′2 − 2ff ′′)

))
=

= 1
rg

(
g′

g
− f ′

f

)
+ 1

2f 2g2

(
ff ′g′ + g(f ′2 − 2ff ′′)

)

(13)

So, finally, the tensor components and scalar are

Rtt = f ′

2rg
− 1

4fg2

(
ff ′g′ + g(f ′2 − 2ff ′′)

)
Rrr = g′

2rg
+ 1

4f 2g

(
ff ′g′ + g(f ′2 − 2ff ′′)

)
Rφφ = r

2g

(
g′

g
− f ′

f

)

R = 1
rg

(
g′

g
− f ′

f

)
+ 1

2f 2g2

(
ff ′g′ + g(f ′2 − 2ff ′′)

)
(14)

(b) Let’s start by finding the components in terms of provided solution. First, let’s
eliminate g(r) and g′(r) = − f ′(r)

f2(r)

Rtt = ff ′

2r
− f

4

(
−(f ′)2

f
+ 1

f
(f ′2 − 2ff ′′)

)
= ff ′

2r
+ f ′′f

2

Rrr = − f ′

2rf
+ 1

4f

(
−(f ′)2

f
+ 1

f
(f ′2 − 2ff ′′)

)
= − f ′

2rf
− f ′′

2f

Rφφ = rf

2

(
−f ′

f
− f ′

f

)
= −rf ′

R = − 1
f

Rtt + fRrr + 1
r2 Rφφ = −2f ′

r
− f ′′

(15)

Plugging in f ′ = 2r
l2

, f ′′ = 2
l2

one gets

Rtt = ff ′

2r
+ f ′′f

2 = 2f

l2 = 2r2 − r2
h

l4

Rrr = − f ′

2rf
− f ′′

2f
= − 2

fl2 = −2 1
r2 − r2

h

Rφφ = −2r2

l2

R = −2f ′

r
− f ′′ = − 6

l2

(16)
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Careful observer shall notice that Rµν = − 2
l2

gµν = 1
3Rgµν . Plugging the result into

Einstein equation
Rµν − 1

2gµνR = 8πGTµν

− 2
l2 gµν + 3

l2 gµν = 8πGTµν

1
l2 gµν = 8πGTµν

Tµν = 1
8πGl2 gµν

(17)

The energy-momentum tensor proportional to the metric may come from non-zero
cosmological constant (Λ = − 1

l2
) or vacuum energy or inflationary potential (see

first question of the practice exam).

(c) Let’s start with time-like geodesics. As in lectures, this may be done by computing
ds2(∂τ , ∂τ ) = −1 and using constant of motion.

−1 = −f(r)
(

dt

dτ

)2

+ g(r)
(

dr

dτ

)2

+ r2
(

dφ

dτ

)2

(18)

Expanding f(r), g(r) and marking d
dτ

by dots:

−1 = −r2 − r2
h

l2 ṫ2 + l2

r2 − r2
h

ṙ2 + r2φ̇2 (19)

As t, φ are cyclic coordinates, one can associate constants of motion to them

E = −gttṫ = r2 − r2
h

l2 ṫ

L = gφφφ̇ = r2φ̇

(20)

which give the equation of motion

−1 = − l2

r2 − r2
h

E2 + l2

r2 − r2
h

ṙ2 + L2

r2 (21)

Reshuffling the terms give

ṙ2

2 + r2 − r2
h

2l2

(
1 + L2

r2

)
= E2

2 (22)

The derivation for null geodesics goes similarly, by starting with ds2(∂λ, ∂λ) = 0 and
gives the equation

ṙ2

2 + r2 − r2
h

2l2
L2

r2 = E2

2 (23)

The potentials may be read of these equations:

Time-like: V (r) = r2 − r2
h

2l2

(
1 + L2

r2

)

Light-like: V (r) = r2 − r2
h

2l2
L2

r2
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(d) For circular orbits one needs ṙ = 0 and r̈ = 0. This corresponds to V (r) = E2

2 and
V ′(r) = 0.
As E is (arbitrary) constant of motion, only the second condition is non-trivial.
Evaluating V ′(r):

V ′(r) =


r4+L2r2

h

l2r3 for timelike geodesics
L2r2

h

l2r3 for null geodesics
(24)

Both of these derivatives are non-negative for r > 0. Therefore, there are no circular
orbits in this space.

(e) Unaccelerated observers move along timelike geodesics. These are described by (22)
which may be transformed to

dr

dτ
= ±

√
E2 − 2V (r) (25)

Firstly, notice that the timelike geodesic with maximal proper time (outside the
horizon) starts at the horizon and ends at the horizon because there is no timelike
geodesic that can stay outside the horizon forever due to V ′(r) > 0. Therefore,

τoutside(E, L) = 2
∫ rmax

rh

dr√
E2 − 2V (r)

(26)

where rmax is the turning point determined by E2 = 2V (rmax).
Secondly, let us argue that τoutside(E, L) for fixed E is maximal for L = 0. Given
an initial velocity ṙ

∣∣∣
r=rh

=
√

E, the steeper the potential, the quicker it reaches the
turning point because r̈ = −V ′(r). In the present case, the potential V (r) =
r2−r2

h

2l2

(
1 + L2

r2

)
and its derivative (24) is growing strictly monotonically with L.

Therefore, the maximal time trajectory corresponds to L = 0. 1

This leaves the potential

V (r) = r2 − r2
h

2l2 (27)

This is quadratic, with solution being simple harmonic motion, r = A sin (ωτ)

where A =
√

E2

2 + r2
h

l2
, and ω = 1

l
. If the observer is initially at point r = rh, the

initial time is τ0 = 1
ω

arcsin( rh

A
), and the time at which it reaches turning point is

τ1 = π
2ω

. Therefore, the total proper time spent on such motion outside the horizon
is τoutside = 2(τ1 − τ0). Finally τ0 decreases with increasing E, with limit of 0 as
E → ∞, giving the maximal answer τoutside = 2(πl

2 − 0) = πl.
To summarize, the timelike geodesic of maximal proper time outside the horizon
describes the motion of an observer that starts at the horizon with a very large
outgoing radial velocity, then the observer moves away from the horizon (to a very
large distance) until it stops and falls back in after proper time

τoutside = πl .

1This can be argued more carefully as follows. Denote the velocity by v(r) =
√

E2 − 2V (r). Then,
τoutside = 2

∫ rmax

rh

dr
v(r) . Now consider the difference τoutside(L1)−τoutside(L2) = 2

∫ r1
rh

dr
v1(r) −2

∫ r2
rh

dr
v2(r) for

fixed E. Since the potential increases with L, the turning points obey r1 > r2 for L1 < L2. Then, using
δr ≡ r1 −r2 > 0, we can write τoutside(L1)− τoutside(L2) = 2

∫ rh+δr

rh

dr
v1(r) +2

∫ r1
rh+δr

dr
(

1
v1(r) − 1

v2(r−δr)

)
.

Both terms are positive. The first is obvious and the second follows from V2(r − δr) < V1(r).
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3. Explosion

(a) To compute the quadrupole moment, we start from the energy momentum tensor.

before explosion: T 00(t, ~x) = Mδ(3)(~x − ~x0) ,

after explosion: T 00(t, ~x) =
n∑

a=1
maδ(3)(~x − ~x0 − ~vat) ,

(28)

where M ≡ ∑n
a=1 ma and ~x0 is the initial position of the isolated body. The

quadrupole moment is instead given by

before explosion: Iij(t) = Mxi
0x

j
0

after explosion: Iij(t) =
n∑

a=1
ma(x0 + vat)i(x0 + vat)j

(29)

(b) We compute the second derivative of the quadrupole moment after the explosion

Ïij(t) = 2
n∑

a=1
mavi

avj
a . (30)

It clearly does not depend on the initial position of the body. Notice that this is
true even during the explosion. To see that, we can write

Iij(t) =
n∑

a=1
maxi

a(t)xj
a(t) (31)

which leads to

Ïij(t) = 2
n∑

a=1
maẋi

a(t)ẋj
a(t) +

n∑
a=1

ma(ẍi
a(t)xj

a(t) + ẍj
a(t)xi

a(t)) (32)

Now, shifting by a translation xa(t) → xa(t) + x0, we have

Ïij(t) → Ïij(t) + xi
0F

j(t) + xj
0F

i(t) = Ïij(t) (33)

because F (t) = ∑n
a=1 maẍa(t) = 0 since there is no external force applied to the

system.

(c)
Ï2 = Ïij Ïklδ

ikδjl

= 4
n∑

a,b=1
mambv

i
avj

avk
b vl

bδikδjl

= 4
n∑

a,b=1
mamb|~va · ~vb|2

= 4
n∑

a,b=1
mamb|~va|2|~vb|2 cos2 θab

≤ 4
n∑

a,b=1
mamb|~va|2|~vb|2 = 16E2 .

(34)

The upper bound is saturated when θab = 0, π , which means pieces of the bomb are
ejected along two opposite directions.
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(d) To make this estimate, start from the expression for the power emitted in gravita-
tional waves

P = −G

5

〈
d3Jij

dt3
d3J ij

dt3

〉
∼ −G

Ï2

T 2 ∼ −G
E2

T 2 . (35)

The energy emitted in gravitational waves is thus

EGW = G

c5
E2

T
≈ 10−13J . (36)

In the last expression, it was important to reintroduce the speed of light c to restore
standard units.
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