QUANTUM PHYSICS III
Problem Set 9 12 November 2024

1. Optical theorem in the Born approximation

Let A™ denote the n’th term in the expansion of A with respect to the small parameter
A. The important observation is that the total cross section computed in the first Born
approximation is actually of the second order in 4,
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To check the validity of the optical theorem to the leading order, one should show that
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The second-order term of the scattering amplitude is written as

, ,P1VIp" )R VIp)
f(2)(p —p ) = —(27T)2mfd3p If“,p/+Epp p : '
T + 1€ — Ep’/

3)

Denote by V(p—q) the matrix element (p|V'|q). Taking the imaginary part of the expression
(3) in the limit of forward scattering p = p’ gives
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The direct inspection of the r.h.s. of egs. (4) and (6) then gives eq. (2).

where we used the fact that
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2. Scattering amplitude in a spherically-symmetric potential

1. In the first Born approximation the scattering amplitude is written as
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where q = p’ — p is the momentum transfer. For a spherically symmetric potential
this expression reduces to
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2. With the potential
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the formula (9) becomes
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where in going to the second line we integrated by parts. Hence,

3. Scattering in a square-well potential

do 7mm? V§a6
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1. Substituting the potential

into eq. (9), we have
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Fig. 1 — The plot of do-/dQ given by eq. (15) (not to scale).

Integrating by parts and taking a square, we obtain

do (singR — gR cos gR)?
— = 4R°m*V;§ :
(gR)

dQ
The plot of this differential cross section in the units gR is shown in figure 1.
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. Note that the distribution (15) develops a zero at the value of gR such that gR =
tangR, i.e., at gR ~ 1.43n. Hence, by measuring the angle 6, in which no scattering
occurs, one can extract the value of R,
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. In order that R may be found from the measuring of the zero point of the differential
cross section (15), the maximum value of gR, 2pR, must be larger than 1.437x, or
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=42 MeV ,

where we restored 7 and ¢ for numerical calculations.

0
. From the formula for the momentum transfer, g = 2p sin > it follows that
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Substituting eq. (15) we arrive after multiple integration by parts at
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5. The slow scattering implies that the wave length A ~ p~! of the scattered particles
exceeds significantly the characteristic size of the potential. In our case this means
PR < 1. Hence, to find the total cross section in this limit, we expand eq. (20) to
the first nontrivial order in pR. This gives
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We observe that in the slow scattering regime the total cross section shows no de-
pendence on the incident momentum of the particles. This is consistent with expec-
tations, since the scattering amplitude (9) itself becomes independent of ¢ in the
limitg — 0.
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6. In the limit of fast scattering, pR > 1, we have
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In agreement with expectations, the cross section goes to zero as the energy of the
particles increases.

4. Cauchy’s theorem and the completeness relation

Let us compute directly the integral of G(z) over the contour C. The integral over the
semi-circle gives
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The integral over the branch cut is computed as follows,
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where |p) denote eigenstates of the continuous spectrum of H, and we used the comple-
teness of the eigenstates. Summing up the contributions (23) and (24), we obtain
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This result tells us that the integral is given by the sum of the residues computed at the
poles of G(z) located inside the contour. Hence, we recovered the Cauchy theorem.
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5*. The nucleus form factor



1. The potential V(r) created by the charge distribution p(r) satisfies Poisson’s equa-

tion
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It is clear that at large distances the real nucleus potential V(r) becomes indistin-
guishable from the potential V,(r) created by the point nucleus. Therefore, there ap-
pears a problem of how to treat the scattering amplitudes computed for the Coulomb-
like potential for which the standard scattering theory is inapplicable. In eq. (27),
the problem is revealed by noticing that the boundary terms in the last line do not
vanish. Instead of developing a new scattering theory, it takes much less efforts to
regularize the potential, i.e., to assume that at very large distances V(r) and Vy(r)
become falling off sufficiently fast to ensure the validness of the conventional scatte-
ring amplitudes. We do not discuss possible physical mechanisms of such suppres-
sion; in fact, we assume that it happens at the distances far beyond the scattering
region we are interested in. For our results to make sense, one has to make sure
that the physical observables are independent of a particular way of regularization
(which is true), and that they are consistent with the results obtained within the
rigorous approach (which is also true). Bearing the above in mind, we write
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The original potentials are restored in the limit @ — 0. In this regularization
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while for the point-like nucleus
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We observe that after the scattering amplitude is computed, one can safely remove
the regularization by sending « to 0. Then, comparing eqs. (29) and (30), we obtain
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The generalization to the case of non-spherically symmetric charge distributions is
therefore

1 .
F(q®) = 7 f dx p(x)e "™ . (32)

That is, the form factor is the Fourier transform of the charge distribution.

. Differentiating eq. (31) with respect to g, we have

d_F:4_7r Oodrrzp(r) rcosqr  singr ’ (33)
dqg Ze J, qr q*r
and dF dF dg 1 dF
= A . (34)
d(g>) dqd(g’) 2q dq
To find dF/d(q?) at ¢* = 0, we first compute
, [rcos gr sin qr]
lim -—
q—0 qr qr
r(1-1@r?)  gr-Lgr?
:nm[ ( 2 ) 4 69" (35)
4—0 q’r Qer
2 2
= lim[-=]= -——
ql—r>%( 3 ) 3
Then dF 1 1 1
- . d 2 . 4 2 = —— 2 . 36
Thus, the mean-square radius of the proton is found from the experimental data as
dF
(r*)y=-6 : (37)
d(qz) q2:0
Numerically
V(r?)y ~ 0.87 - 107" cm . (38)

This quantity is also called the charge radius of the proton.



