
QUANTUM PHYSICS III
Problem Set 9 12 November 2024

1. Optical theorem in the Born approximation

Let A(n) denote the n’th term in the expansion of A with respect to the small parameter
λ. The important observation is that the total cross section computed in the first Born
approximation is actually of the second order in λ,∫

dΩ| f (1)|2 = σ(2) . (1)

To check the validity of the optical theorem to the leading order, one should show that

σ(2) =
4π
p

Im f (2)(p→ p) . (2)

The second-order term of the scattering amplitude is written as

f (2)(p→ p′) = −(2π)2m
∫

d3p′′
⟨p′|V̂ |p′′⟩⟨p′′|V̂ |p⟩
Ep′+Ep

2 + iϵ − Ep′′
. (3)

Denote by Ṽ(p−q) the matrix element ⟨p|V̂ |q⟩. Taking the imaginary part of the expression
(3) in the limit of forward scattering p = p′ gives

Im f (2)(p→ p) = −(2π)2m
∫

d3p′′|Ṽ(p′′ − p)|2Im
1

Ep + iϵ − Ep′′

= 4π3m
∫

d3p′′|Ṽ(p′′ − p)|2δ(Ep − Ep′′) ,
(4)

where we made use of the relation

1
x ± iϵ

= P
1
x
∓ iπδ(x) . (5)

On the other hand,

σ(2) =

∫
dΩ| f (1)|2 = (2π)4m2

∫
dΩ|Ṽ(p′ − p)|2

=
(2π)4m2

p2

∫
d3p′δ(p′ − p)|Ṽ(p′ − p)|2

=
(2π)4m

p

∫
d3p′δ(Ep − Ep′)|Ṽ(p′ − p)|2 ,

(6)

where we used the fact that ∫
dΩ =

1
p2

∫
d3p′δ(p′ − p) . (7)

The direct inspection of the r.h.s. of eqs. (4) and (6) then gives eq. (2).
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2. Scattering amplitude in a spherically-symmetric potential

1. In the first Born approximation the scattering amplitude is written as

f (p→ p′) = −
m
2π

∫
d3xV(x)e−iq·x , (8)

where q = p′ − p is the momentum transfer. For a spherically symmetric potential
this expression reduces to

f (p→ p′) = −m
∫ ∞

0
dr r2V(r)

∫ π

0
dθ sin θe−iqr cos θ

= m
∫ ∞

0
dr r2V(r)

eiqr − e−iqr

−iqr

= −
2m
q

∫ ∞

0
dr r sin(qr)V(r) .

(9)

2. With the potential
V(r) = V0e−r2/a2

(10)

the formula (9) becomes

f (p→ p′) = −
2mV0

q

∫ ∞

0
dr re−r2/a2

sin(qr) = −
mV0

q

∫ ∞

−∞

dr re−r2/a2
sin(qr)

= −
mV0a2

2

∫ ∞

−∞

dr e−r2/a2
cos(qr) = −

mV0a3

2

∫ ∞

−∞

dr e−r2
cos(qar)

= −
mV0a3

4

∫ ∞

−∞

dr e−q2a2/4
(
e−(r−iqa/2)2

+ e−(r+iqa/2)2)
= −

mV0a3

2
√
πe−q2a2/4 ,

(11)

where in going to the second line we integrated by parts. Hence,

dσ
dΩ
=
πm2V2

0 a6

4
e−q2a2/2 . (12)

3. Scattering in a square-well potential

1. Substituting the potential

V(r) =
{
− V0 , r < R ,
0 , r > R

(13)

into eq. (9), we have

f (p→ p′) =
2mV0

q

∫ R

0
dr r sin qr . (14)
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Fig. 1 – The plot of dσ/dΩ given by eq. (15) (not to scale).

Integrating by parts and taking a square, we obtain

dσ
dΩ
= 4R6m2V2

0
(sin qR − qR cos qR)2

(qR)6 . (15)

The plot of this differential cross section in the units qR is shown in figure 1.

2. Note that the distribution (15) develops a zero at the value of qR such that qR =
tan qR, i.e., at qR ≈ 1.43π. Hence, by measuring the angle θ∗ in which no scattering
occurs, one can extract the value of R,

R ≈
1.43π

2p sin θ∗2
. (16)

3. In order that R may be found from the measuring of the zero point of the differential
cross section (15), the maximum value of qR, 2pR, must be larger than 1.43π, or

E ⩾
ℏ2

2mp

(
1.43π

2R

)2

=
(1.43π)2

8
ℏ2

mpc2

( c
R

)2

=
(1.43π)2

8
·

(6.58 · 10−22)2

938 · 106 ·

(
3 · 1010

5 · 10−13

)2

= 4.2 MeV ,

(17)

where we restored ℏ and c for numerical calculations.

4. From the formula for the momentum transfer, q = 2p sin
θ

2
, it follows that

dΩ = dϕ d cos θ = 2π
qdq
p2 . (18)

Therefore,

σ =

∫ 2p

0

dσ
dΩ

2πqdq
p2 . (19)

Substituting eq. (15) we arrive after multiple integration by parts at

σ =
2π
p2 (mV0R2)2

[
1 −

1
(2pR)2 +

sin 4pR
(2pR)3 −

sin2 2pR
(2pR)4

]
. (20)
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5. The slow scattering implies that the wave length λ ∼ p−1 of the scattered particles
exceeds significantly the characteristic size of the potential. In our case this means
pR ≪ 1. Hence, to find the total cross section in this limit, we expand eq. (20) to
the first nontrivial order in pR. This gives

σ =
16πR2

9
(mV0R2)2 . (21)

We observe that in the slow scattering regime the total cross section shows no de-
pendence on the incident momentum of the particles. This is consistent with expec-
tations, since the scattering amplitude (9) itself becomes independent of q in the
limit q→ 0.

6. In the limit of fast scattering, pR ≫ 1, we have

σ =
2π
p2 (mV0R2)2 . (22)

In agreement with expectations, the cross section goes to zero as the energy of the
particles increases.

4. Cauchy’s theorem and the completeness relation

Let us compute directly the integral of Ĝ(z) over the contour C. The integral over the
semi-circle gives∫

circle

dz
z − Ĥ

= lim
R→∞

R
∫ 2π

0

dϕieiϕ

Reiϕ − Ĥ

= lim
R→∞

Log
(
eiϕ −

Ĥ
R

)
ϕ=2π
− Log

(
eiϕ −

Ĥ
R

)
ϕ=0

 = 2πi .
(23)

The integral over the branch cut is computed as follows,∫
branch cut

Ĝ(z)dz =
∫ ∞

0
dx

∫
dp|p⟩⟨p|

(
1

x + iϵ − Ep
−

1
x − iϵ − Ep

)
= −2πi

∫
dp|p⟩⟨p| ,

(24)

where |p⟩ denote eigenstates of the continuous spectrum of Ĥ, and we used the comple-
teness of the eigenstates. Summing up the contributions (23) and (24), we obtain∮

C
Ĝ(z)dz = 2πi

∑
n

|n⟩⟨n| +
∫

dp|p⟩⟨p|

 − 2πi
∫

dp|p⟩⟨p|

= 2πi
∑

n

|n⟩⟨n| .
(25)

This result tells us that the integral is given by the sum of the residues computed at the
poles of Ĝ(z) located inside the contour. Hence, we recovered the Cauchy theorem.

5∗. The nucleus form factor
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1. The potential V(r) created by the charge distribution ρ(r) satisfies Poisson’s equa-
tion

∇2V(r) =
1
r

d2

dr2 (rV(r)) = 4πeρ(r) . (26)

By eq. (9),

f (p→ p′) = −
2m
q

∫ ∞

0
dr rV(r) sin qr

=
2m
q2

[
rV(r) cos qr

]r=∞
r=0 −

2m
q2

∫ ∞

0
dr (rV(r))′ cos qr

=
2m
q2

[
rV(r) cos qr −

1
q

(rV(r))′ sin qr
]r=∞

r=0
+

2m
q3

∫ ∞

0
dr (rV(r))′′ sin qr .

(27)

It is clear that at large distances the real nucleus potential V(r) becomes indistin-
guishable from the potential V0(r) created by the point nucleus. Therefore, there ap-
pears a problem of how to treat the scattering amplitudes computed for the Coulomb-
like potential for which the standard scattering theory is inapplicable. In eq. (27),
the problem is revealed by noticing that the boundary terms in the last line do not
vanish. Instead of developing a new scattering theory, it takes much less efforts to
regularize the potential, i.e., to assume that at very large distances V(r) and V0(r)
become falling off sufficiently fast to ensure the validness of the conventional scatte-
ring amplitudes. We do not discuss possible physical mechanisms of such suppres-
sion ; in fact, we assume that it happens at the distances far beyond the scattering
region we are interested in. For our results to make sense, one has to make sure
that the physical observables are independent of a particular way of regularization
(which is true), and that they are consistent with the results obtained within the
rigorous approach (which is also true). Bearing the above in mind, we write

V(r) , V0(r) ∼
Ze2

r
e−αr , r → ∞ . (28)

The original potentials are restored in the limit α→ 0. In this regularization

f (p→ p′) =
8πme

q3

∫ ∞

0
dr rρ(r) sin qr , (29)

while for the point-like nucleus

f0(p→ p′) =
2m
q

∫ ∞

0
dr Ze2e−αr sin qr

=
2mZe2

q
q

q2 + α2 .

(30)

We observe that after the scattering amplitude is computed, one can safely remove
the regularization by sending α to 0. Then, comparing eqs. (29) and (30), we obtain

F(q2) =
4π
Ze

∫ ∞

0
dr r2ρ(r)

sin qr
qr
. (31)
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The generalization to the case of non-spherically symmetric charge distributions is
therefore

F(q2) =
1

Ze

∫
dx ρ(x)e−iq·x . (32)

That is, the form factor is the Fourier transform of the charge distribution.

2. Differentiating eq. (31) with respect to q, we have

dF
dq
=

4π
Ze

∫ ∞

0
dr r2ρ(r)

[
r cos qr

qr
−

sin qr
q2r

]
, (33)

and
dF

d(q2)
=

dF
dq

dq
d(q2)

=
1

2q
·

dF
dq
. (34)

To find dF/d(q2) at q2 = 0, we first compute

lim
q→0

[
r cos qr

qr
−

sin qr
q2r

]
= lim

q→0

r ·
(
1 − 1

2 (qr)2
)

q2r
−

qr − 1
6 (qr)3

q3r


= lim

q→0

(
−

r2

3

)
= −

r2

3
.

(35)

Then
dF

d(q2)

∣∣∣∣∣
q2=0
= −

1
6
·

1
Ze

∫ ∞

0
dr r2ρ(r) · 4πr2 = −

1
6
⟨r2⟩ . (36)

Thus, the mean-square radius of the proton is found from the experimental data as

⟨r2⟩ = −6
dF

d(q2)

∣∣∣∣∣
q2=0
. (37)

Numerically √
⟨r2⟩ ≈ 0.87 · 10−13 cm . (38)

This quantity is also called the charge radius of the proton.
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