1. On integrals involving the delta-function

1. Consider the integral

$$I = \int_{-\infty}^{\infty} dx \ f(x)\delta(ax^2 + bx + c) \ . \tag{1}$$

Denote the argument of the delta-function by g(x). There are several possibilities:

- If the equation g(x) = 0 has no real roots, then the argument of the deltafunction is never zero, hence I = 0.
- Suppose that the equation g(x) = 0 has two different real roots $x_{1,2}$. Near each of them the function g(x) can be written as $g(x) = g'(x_{1,2})(x x_{1,2}) + O((x x_{1,2})^2)$. Let O_1 and O_2 be small neighborhoods of the points x_1 and x_2 correspondingly. The integral I becomes

$$I = \int_{O_1} \frac{dy}{|g'(x_1 + y)|} f(x_1 + y)\delta(y) + \int_{O_2} \frac{dy}{|g'(x_2 + y)|} f(x_2 + y)\delta(y), \quad (2)$$

where we made the change of variable $y = x - x_1$ in the first integral, $y = x - x_2$ in the second integral, and used the property of the delta-function

$$\delta(\alpha x) = \frac{1}{|\alpha|} \delta(x), \qquad (3)$$

with α some constant. Taking the integrals, we have

$$I = \frac{f(x_1)}{|g'(x_1)|} + \frac{f(x_2)}{|g'(x_2)|}.$$
 (4)

Finally, $|g'(x_1)| = |g'(x_2)| = |a(x_1 - x_2)| = \sqrt{b^2 - 4ac}$, and

$$I = (f(x_1) + f(x_2))(b^2 - 4ac)^{-1/2}.$$
 (5)

— Suppose now that $x_1 = x_2 = x_0$. Expanding g(x) around x_0 and changing the variable $y = x - x_0$, we arrive at

$$I = \int_{-\infty}^{\infty} \frac{dy f(x_0 + y)}{|g'(x_0 + y)|} \delta(y) = \lim_{x \to x_0} \frac{f(x)}{2|a(x - x_0)|} = \begin{cases} \infty, & f(x_0) \neq 0, \\ \frac{f'(x_0)}{2|a|}, & f(x_0) = 0. \end{cases}$$
(6)

2. Recall that

$$\delta(f(x)) = \sum_{i} \frac{\delta(x - x_i)}{|f'(x_i)|}, \qquad (7)$$

where *i* numerates the roots of the function *f*. In our case $E_p = \frac{p^2}{2m}$, and

$$\int d^{3}\mathbf{p} \, \delta(E_{p'} - E_{p}) f(\mathbf{p}) = \int d\Omega dp p^{2} \delta(E_{p} - E_{p'}) f(\mathbf{p})$$

$$= \int d\Omega dp p^{2} \delta(p - p') \frac{2m}{2p'} f(\mathbf{p})$$

$$= mp' \int d\Omega f(\mathbf{n}) ,$$
(8)

where

$$\mathbf{n} = |\mathbf{p}'| \frac{\mathbf{p}}{|\mathbf{p}|} \tag{9}$$

is a vector of modulus $|\mathbf{p}'|$ in the direction of \mathbf{p} .

2. Free particle's Green function in three dimensions

1. By definition,

$$\hat{G}_0(z) = \frac{1}{z - \hat{H}_0} \ . \tag{10}$$

This means that

$$\hat{G}_0(z)|\mathbf{p}\rangle = \frac{1}{z - E_p}|\mathbf{p}\rangle , \quad E_p = \frac{p^2}{2m} . \tag{11}$$

Therefore,

$$\langle \mathbf{x} | \hat{G}_0(z) | \mathbf{x}' \rangle = \int d^3 \mathbf{p} \langle \mathbf{x} | \hat{G}_0(z) | \mathbf{p} \rangle \langle \mathbf{p} | \mathbf{x}' \rangle = \frac{1}{(2\pi)^3} \int d^3 \mathbf{p} \frac{e^{i\mathbf{p} \cdot (\mathbf{x} - \mathbf{x}')}}{z - E_p}.$$
 (12)

2. Let us first compute the angular part of the integral:

$$\langle \mathbf{x} | \hat{G}_{0}(z) | \mathbf{x}' \rangle = 2\pi \frac{1}{(2\pi)^{3}} \int_{0}^{\infty} dp p^{2} \int_{0}^{\pi} d\theta \sin \theta \frac{e^{ip|\mathbf{x} - \mathbf{x}'|\cos \theta}}{z - E_{p}}$$

$$= -\frac{1}{(2\pi)^{2}} \int_{0}^{\infty} dp \frac{p^{2}}{ip|\mathbf{x} - \mathbf{x}'|} \frac{1}{z - E_{p}} \left(e^{-ip|\mathbf{x} - \mathbf{x}'|} - e^{ip|\mathbf{x} - \mathbf{x}'|} \right)$$

$$= -\frac{im}{2\pi^{2}|\mathbf{x} - \mathbf{x}'|} \int_{-\infty}^{\infty} dp p \frac{e^{ip|\mathbf{x} - \mathbf{x}'|}}{2mz - p^{2}} .$$
(13)

The resulting integral can be computed by the method of residues. To this end, we close the contour of integration in the plane of complex p as shown in figure 1. This does not change the value of the integral, since in the upper half-plane the integrand approaches zero exponentially fast when the radius of the semi-circle goes to infinity. The integrand has two poles at $p = \pm \sqrt{2mz}$. Recall that $z = E + i\epsilon$, $\epsilon > 0$, hence the pole contributing to the integral is the one at $p = \pm \sqrt{2mz}$. Thus,

$$\langle \mathbf{x} | \hat{G}_{0}(z) | \mathbf{x}' \rangle = -\frac{im}{2\pi^{2} |\mathbf{x} - \mathbf{x}'|} 2\pi i \operatorname{res}_{p = \sqrt{2mz}} \frac{p e^{ip|\mathbf{x} - \mathbf{x}'|}}{(p - \sqrt{2mz})(p + \sqrt{2mz})}$$

$$= \frac{m}{2\pi} \frac{e^{i\sqrt{2mz}|\mathbf{x} - \mathbf{x}'|}}{|\mathbf{x} - \mathbf{x}'|} .$$
(14)

3. The formula (12) tells us that the Fourier transform of the function $G_0(z, \mathbf{x}, \mathbf{x}') = \langle \mathbf{x} | \hat{G}_0(z) | \mathbf{x}' \rangle$ is

$$G_0(z, \mathbf{p}, \mathbf{p}') = \delta(\mathbf{p} - \mathbf{p}') \frac{1}{z - E_p}.$$
 (15)

This implies in particular the conservation of the free particle momentum. We now use the momentum representation of the Green function to yield

$$\langle \mathbf{x} | (z - \hat{H}_{0}) \hat{G}_{0}(z) | \mathbf{x}' \rangle = \int d^{3}\mathbf{p} d^{3}\mathbf{p}' d^{3}\mathbf{p}'' \langle \mathbf{x} | \mathbf{p} \rangle \langle \mathbf{p} | z - \hat{H}_{0} | \mathbf{p}'' \rangle \langle \mathbf{p}'' | \hat{G}_{0}(z) | \mathbf{p}' \rangle \langle \mathbf{p}' | \mathbf{x}' \rangle$$

$$= \frac{1}{(2\pi)^{3}} \int d^{3}\mathbf{p} d^{3}\mathbf{p}' d^{3}\mathbf{p}'' e^{i\mathbf{p}\cdot\mathbf{x}} \delta(\mathbf{p} - \mathbf{p}'') (z - E_{p''}) \delta(\mathbf{p}'' - \mathbf{p}') \frac{1}{z - E_{p'}} e^{-i\mathbf{p}'\cdot\mathbf{x}'}$$

$$= \frac{1}{(2\pi)^{3/2}} \int d^{3}\mathbf{p} d^{3}\mathbf{p}' e^{i\mathbf{p}\cdot\mathbf{x}} e^{-i\mathbf{p}'\cdot\mathbf{x}'} \delta(\mathbf{p} - \mathbf{p}')$$

$$= \frac{1}{(2\pi)^{3/2}} \int d^{3}\mathbf{p} e^{i\mathbf{p}(\mathbf{x} - \mathbf{x}')} = \delta(\mathbf{x} - \mathbf{x}') .$$
(16)

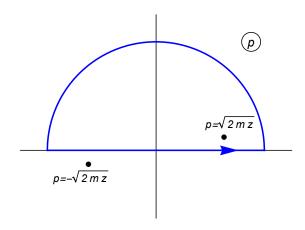


Fig. 1 – The contour of integration

4. The matrix element $G_0(z, \mathbf{x}, \mathbf{x}')$ as a function of the complex variable z has a branch cut along the real positive values of z. To calculate the difference between the points on the opposite sides of the branch cut, one should continue analytically the function \sqrt{z} from the one side to another. This gives,

$$G_{0}(E + i\epsilon, \mathbf{x}, \mathbf{x}') - G_{0}(E - i\epsilon, \mathbf{x}, \mathbf{x}') = -\frac{m}{2\pi |\mathbf{x} - \mathbf{x}'|} \left(e^{i\sqrt{2mE} |\mathbf{x} - \mathbf{x}'|} - e^{-i\sqrt{2mE} |\mathbf{x} - \mathbf{x}'|} \right)$$
$$= -\frac{im}{\pi |\mathbf{x} - \mathbf{x}'|} \sin \left(\sqrt{2mE} |\mathbf{x} - \mathbf{x}'| \right) . \tag{17}$$

5. For large values of $x = |\mathbf{x}|$, the modulus $|\mathbf{x} - \mathbf{x}'|$ can be expanded as

$$|\mathbf{x} - \mathbf{x}'| = x\sqrt{1 - \frac{2\mathbf{x} \cdot \mathbf{x}'}{x^2} + \frac{{x'}^2}{x^2}} \approx x - \frac{\mathbf{x} \cdot \mathbf{x}'}{x}.$$
 (18)

Thus,

$$G_0(z, \mathbf{x}, \mathbf{x}') \approx -\frac{m}{2\pi} \frac{\exp\left[i\sqrt{2mz}\left(x - \frac{\mathbf{x} \cdot \mathbf{x}'}{x}\right)\right]}{x}, \quad x \to \infty.$$
 (19)

3. Friedel sum rule

1. The eigenstates of the Hamiltonian \hat{H} form an orthonormal basis of states. This fact allows us to write

$$\hat{G}(x+i\epsilon) = \frac{1}{x-\hat{H}+i\epsilon} = \sum_{n} \frac{|n\rangle\langle n|}{x-E_n+i\epsilon} \,. \tag{20}$$

Here by $|n\rangle$ we understand both the bound states and the scattering states. For the matrix element we have,

$$G_{nm}(x+i\epsilon) = \langle n|\hat{G}(x+i\epsilon)|m\rangle = \sum_{n} \frac{\delta_{nm}}{x - E_n + i\epsilon} , \qquad (21)$$

or

$$G_{nn}(x+i\epsilon) = \frac{1}{x - E_n + i\epsilon} = \frac{d}{dx} \log G_{nn}^{-1}(x+i\epsilon) = -\frac{d}{dx} \log G_{nn}(x+i\epsilon) . \tag{22}$$

Now we turn to the function N(x). Using the relation

$$\frac{1}{r+i\epsilon} = -i\pi\delta(x) + \mathcal{P}\frac{1}{r}\,,\tag{23}$$

we have,

$$N(x) = \sum_{n} \delta(x - E_n) = -\frac{1}{\pi} \sum_{n} \operatorname{Im} \frac{1}{x - E_n + i\epsilon} = -\frac{1}{\pi} \operatorname{Im} \sum_{n} G_{nn}(x + i\epsilon). \tag{24}$$

Substitution of the expression (22) then leads to

$$N(x) = \frac{1}{\pi} \operatorname{Im} \sum_{n} \frac{d}{dx} \log G_{nn}(x + i\epsilon) = \frac{1}{\pi} \frac{d}{dx} \operatorname{Im} \log \det \hat{G}(x + i\epsilon) . \tag{25}$$

2. From eq. (25) it follows that

$$N(x) - N_0(x) = \frac{1}{\pi} \frac{d}{dx} \operatorname{Im} \left[\log \det \hat{G}(x + i\epsilon) - \log \det \hat{G}_0(x + i\epsilon) \right]$$
$$= \frac{1}{\pi} \frac{d}{dx} \operatorname{Im} \log \det \hat{G}_0^{-1}(x + i\epsilon) .$$
 (26)

Writing $\det \hat{G}\hat{G}_0^{-1}$ as $|\det \hat{G}\hat{G}_0^{-1}|e^{i\arg\det \hat{G}\hat{G}_0^{-1}}$ gives

$$N(x) - N_0(x) = \frac{1}{\pi} \frac{d}{dx} \arg \det \hat{G} \hat{G}_0^{-1}(x + i\epsilon)$$
 (27)

4. Slow scattering in a gas

The problem concerns atom-atom scattering inside a gas. The condition

$$p \lesssim \frac{\hbar}{R} \tag{28}$$

implies $\mu v_r R \lesssim \hbar$, where $\mu = \frac{1}{2} m_p$ is the reduced mass of the two atoms, $\mathbf{v}_r = \mathbf{v}_1 - \mathbf{v}_2$ is the relative velocity between the two atoms of velocities \mathbf{v}_1 , \mathbf{v}_2 , and R = 4 Å. In thermal equilibrium

$$\frac{1}{2}m_p\langle v^2\rangle = \frac{3}{2}kT \ , \tag{29}$$

with k the Boltzmann constant and T the temperature. The mean-square value of the relative speed v_r is

$$\langle v_r^2 \rangle = \langle (\mathbf{v}_1 - \mathbf{v}_2)^2 \rangle = \langle v_1^2 + v_2^2 - 2(\mathbf{v}_1 \cdot \mathbf{v}_2) \rangle = 2\langle v^2 \rangle = \frac{6kT}{m_p} . \tag{30}$$

Thus,

$$\mu R v_r \approx \frac{m_p R}{2} \sqrt{\frac{6kT}{m_p}} \lesssim \hbar ,$$
 (31)

i.e.,

$$T \lesssim \frac{2\hbar^2}{3m_p c^2} \left(\frac{c}{R}\right)^2 \frac{1}{k} = 2 \ K \ .$$
 (32)