QUANTUM PHYSICS III

Solutions to Problem Set 8 5 November 2024

1. On integrals involving the delta-function

1. Consider the integral

I= foo dx f(x)6(ax* + bx +c¢) . (1)

Denote the argument of the delta-function by g(x). There are several possibilities :

— If the equation g(x) = O has no real roots, then the argument of the delta-
function is never zero, hence 1 = 0.

— Suppose that the equation g(x) = 0 has two different real roots x;,. Near
each of them the function g(x) can be written as g(x) = g'(x;2)(x — x12) +
O((x — x12)?). Let O; and O, be small neighborhoods of the points x; and x,
correspondingly. The integral / becomes

: f >
I= 1] oy, (2
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where we made the change of variable y = x—x; in the first integral, y = x—x;

in the second integral, and used the property of the delta-function

S(ax) = ieS(x), 3)
|c|

with @ some constant. Taking the integrals, we have

] = S N f(x2)
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Finally, |g’(x1)| = |g'(x2)| = la(x; — x2)| = Vb? — 4ac, and
I'=(f(x) + f))(B* —4ac)™?. (5)

— Suppose now that x; = x, = xo. Expanding g(x) around x, and changing the
variable y = x — x, we arrive at
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2. Recall that

o(x—x;)
o(f(x) = ; (7)
1= 2 rar
where i numerates the roots of the function f. In our case E, = —2 , and
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fd3p O(Ey — p)f(p)=fd9dpp25(Ep—Epf)f(p)

f dQdpp f(p) (®)
—mp! [ dos.
where
e
n=|p'|— ©)
pl
is a vector of modulus |p’| in the direction of p.
2. Free particle’s Green function in three dimensions
1. By definition,
Go(z) = (10)
0 z— H()
This means that
ool = ——1py, E,=F (11)
OZp_z—Epp’ P om

Therefore,

A ~ 1 ip-(x—x")
KGo@IX') = f EPEGEPIPN) = f d'p— (2

2. Let us first compute the angular part of the integral :
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The resulting integral can be computed by the method of residues. To this end, we
close the contour of integration in the plane of complex p as shown in figure 1.
This does not change the value of the integral, since in the upper half-plane the
integrand approaches zero exponentially fast when the radius of the semi-circle
goes to infinity. The integrand has two poles at p = + 2mz. Recall that 7 = E + ie,
€ > 0, hence the pole contributing to the integral is the one at p = + V2mz. Thus,
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3. The formula (12) tells us that the Fourier transform of the function Gy(z,x,x’) =
(X|Go(2)Ix") 18

1
Go(z,p,p) = 6(p - p’)Z (15)

-E, ’
This implies in particular the conservation of the free particle momentum. We now
use the momentum representation of the Green function to yield

(xl(z = H))Go(2)IX') = f dEpd®p’ dp” (xIp)(plz — Holp” }p"1Go(2)Ip’ Xp'IX')
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Fic. 1 — The contour of integration

4. The matrix element Gy(z, X, X") as a function of the complex variable z has a branch
cut along the real positive values of z. To calculate the difference between the points
on the opposite sides of the branch cut, one should continue analytically the function
4/z from the one side to another. This gives,

m . ’ . ’
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5. For large values of x = |x|, the modulus |x — x’| can be expanded as

2 - 72 e
|X—X'|:x\/1— R T (18)
X X X
Thus,
. X X
exp[l 2mz(x— )]
m X
Go(z, x,X') ® —— , X090, (19)
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3. Friedel sum rule

1. The eigenstates of the Hamiltonian A form an orthonormal basis of states. This fact

allows us to write
A+ie “HAx-E,+ie’

. ! Innl
G = — _— 20
(x+ie) = — Z (20)

Here by |n) we understand both the bound states and the scattering states. For the
matrix element we have,

S 6}’!"’[
Gun(x+ie) = (n|G(x+1i = _, 21
(x + i€) = (nlG(x + ie)|m) Z TE @1)
or
G.n(x + i€) ! dloG‘1(+') dloG(+') (22)
m(x +ie) = ————— = — X+i€)=—— (X + i€) .
x—E,+ie dx &M dx £
Now we turn to the function N(x). Using the relation
1
— = —iné(x) + P—, (23)
X+ i€ X
we have,
| 1 1 .
N(x) = Z 6(x~E;) =~ Z Im- e =~ Im Z Gu(x +i€).  (24)
Substitution of the expression (22) then leads to
1 d 1d A
N(x) = —Im Z — log G,,(x + ie) = ——Imlogdet G(x + i€) . (25)
T - dx mdx
2. From eq. (25) it follows that
1d A N
N(@) = No(x) = ——Im |log det G(x + ie) — log det Go(x + i) |
1 &8
= ——Imlogdet Géal(x + i€) .
mdx
Writing det GG;" as | det GGy 'le! 296G gives
1d A A
N(x) — No(x) = ——arg det GG, (x + ie) . (27)
mdx
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4. Slow scattering in a gas

The problem concerns atom-atom scattering inside a gas. The condition

fi
< = 28
PS5 (28)
implies uv,R < h, where u = %mp is the reduced mass of the two atoms, v, = v; — v, 18
the relative velocity between the two atoms of velocities vy, v,, and R = 4 A. In thermal
equilibrium
1 5 3
Emp(v > = EkT , (29)

with k the Boltzmann constant and 7 the temperature. The mean-square value of the
relative speed v, is

6kT
2y =i =v2)P) = (01 +v3 —2(v; - Vo)) = 207y = — . (30)
P
Thus,
R T
URY, = i 7 /—6k <h, (31)
2 m,
1.e.,
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