QUANTUM PHYSICS III

Solutions to Problem Set 7 29 October 2024

1. Interaction picture
1. Recalling the relation between states and operators in the Schroedinger and Heisen-

berg pictures, we have

¥, (1) = U 0)¥s(t) = U000V ,
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2. The evolution equation for the wave function in the interaction picture is obtained

straightforwardly :
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where in the last line we used the fact that W (¢) = Uo(t)¥(7).

3. Similarly to the Schroedinger picture in which Ws (1) = U(r)¥(0), one can define an
operator U,(¢) such that ¥,(7) = U;(1)¥(0). From eq. (1) we have

Y1) = Ui U(6)¥(0) . (3)
Hence U,(f) = Ug(t) U (7). Substitution of eq. (3) into eq. (2) gives

1 dU, (1)
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= ViU, . “4)

The initial condition for the operator U,(1) is U;(0) = 1.

2. Unitarity versus isometry

1. (a) From D(U) = H and R(U) = H it follows that there is an inverse operator
U~! such that UU™' = 1. Then, from UTUU! = U~ it follows that Ut = U,
Therefore, U'0U" = U, and UUT = 1.

(b) From U'U = 1 if follows that R(U) € D(U") = H. Then, from UU = 1 it
follows that for any element x from D(U™) the operator U must map back to x the
image of x under the action of U*. Hence, R(U) = D(U) = H.



2. One should prove that if  is finite-dimensional, then R(U) = H follows from
D) = H. After that, UTU = 1 will follow from UU" = 1. To prove the
coincidence of the domain and the range of U, we enumerate the basis in H as
[1), ..., |n). Then, U is represented by an n X n matrix. Since UtU = 1, it follows that
det U = 1. Hence, U is non-degenerate and there is an inverse n X n matrix J~'.
Thus, D(U™") = H and R(U) = H.

3. To construct the required sequence, one can use the Gram—Schmidt orthogonaliza-
tion process. Select the basis |1), ..., |n), ... in H. Choose the action of U(A) on the
vector |1) as follows,

Wiy = 1) = Vally + Vi-112). (&)

We will consider 4 in the range [0, 1]. It is clear that (1’|1") = 1. Now define the
action of U(1) on [2) as UDI2) = [2) = ca1|1) + ¢l2) + ¢233), and choose the
coeflicients c,1, ¢, c23 such that (1’|2") = 0 and (2’|2") = 1. The orthogonality
condition fixes the values of ¢,; and ¢»,,

e =—fOVI=A, cpn=f)Va, (6)

up to some arbitrary function f(1). One can choose, for example, f(1) = VA. Then,
3 1s fixed by the normalization condition,

= \V1-2-A1-2). (7)

Hence

OORY=12)Y==-VAVI =2 |D+A12)+ V1 -2 -2(1-2) 3) . ®)
The next step of this procedure gives,
O(DI3) =13") = carll) + cxl2) + c33l3) + c3al4) 9)

where

c31= VAA = A1 =2 - A1 -2),
cp= VANI=2-A1 -1+ Vav1i-2),
C33 = \/z(—\/z Vl—/l—/l),

C34 = \/1—6‘31—032—033-

(10)

Since H is infinte-dimensional, one can continue this process and define the ac-
tion of U(2) on arbitrary |n). For all 4 € (0, 1], the operator U() is unitary by
construction. However, it is easy to see that in the limit of zero A it becomes a
“shift” operator

UO)liy = Qliy = |i + 1), Vi, (11)

whose range does not include the vector |1).



3. Semiclassical S -matrix in one dimension
We want to compute the matrix element

S(p,o,p',0) = f dxdy (W o |X) (XIS [y) YW p.o) (12)

By inserting a complete set of momentum states, we also know

xlSly) = f dqdq’ {x1q"){q'IS |q) {qly) (13)
Now, the question asks us to consider ¥, just to be the transmitted wave. This tells us

({'IS1g) = D(q)6(q — q") (14)

The delta function ensures that the wave is transmitted (were we to consider reflection,
there would be an additional contribution).
Thus we need to compute :

S(p,o,p',0') = f dxdydqy o (%, D, (v, ND(g)e " (15)

Now we plugin D(gq) = 1 - ¢~¢/%. The first part gives 1, as the wave packets are norma-
lised. It then remains to compute the following Gaussian integrals :
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These integrals are done by successively completing the squares.



