
QUANTUM PHYSICS III
Solutions to Problem Set 5 8 October 2024

1. Perturbation of potential and WKB

1. From the quantization conditions∮
p0dx = 2πℏ

(
n +

1
2

)
,

∮
pdx = 2πℏ

(
n +

1
2

)
(1)

it follows that ∮
(p − p0) dx = 0 , (2)

where we used the fact that the change of the turning points under the small pertur-
bation δV(x) can be neglected to the first order in δV(x)/V(x). Next,

p =

√
2m(E − V)

(
1 +

δE − δV
E − V

)
≈ p0 +

m
p0

(δE − δV) . (3)

Substituting this into eq. (2) gives∮
m
p0

(δEn − δV) dx = 0 , (4)

or
δEn

∮
dx
p0
=

∮
δV

dx
p0

. (5)

2. The period of oscillations is given by

Tn =

∮
dt =

∮
dx
vn
=

∮
∂pn

∂En
dx , (6)

where x, vn, and En are classical coordinate, velocity and energy of the particle on
the n’th energy level correspondingly. Therefore,

δEn

m

∮
dt =

1
m

∮
δVdt ⇒ δEn =

1
Tn

∫ Tn

0
δV[xn(t)]dt . (7)
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2. Rosen-Morse potential

1. We have to compute the integral

J =
∫ x∗

−x∗

√
2m(E − V(x) dx , V(x) = −

V0

cosh2
(

x
x0

) , (8)

where ±x∗ are the turning points and −V0 < E < 0. The integral J can be transfor-
med to a simple form by taking the derivative with respect to E. To the LO, one can
neglect the dependence of the turning points on energy and set ∂x∗/∂E = 0. Then,

dJ
dE
= m

∫ x∗

−x∗

dx
√

2m(E − V(x)

=
mx0
√
−2mE

∫ z∗

−z∗

dz√
−

(
1 + z2) (1 + V0

E
1

1 + z2

)
=

mx0
√
−2mE

∫ z∗

−z∗

dz√
V0

E
+ 1

√
−1 −

z2

V0
E + 1

=
mx0
√
−2mE

arcsin
z√
−1 − V0

E


z=z∗

z=−z∗

=
mx0π
√
−2mE

,

(9)

where z∗ = sinh x∗
x0

, and in going to the second line we used the change of variables

z = sinh
x
x0
. (10)

Integrating the answer, we obtain

J = −πx0

√
−2mE + Const . (11)

Observing that J(E = −V0) = 0, we find the constant to be Const = πx0
√

2mV0.
Finally,

J = πx0

√
2m

( √
V0 −

√
−E

)
= πℏ

(
n +

1
2

)
, (12)

and the energy levels are given by

En = −

(√
V0 −

ℏ

x0
√

2m

(
n +

1
2

))2

, n = 0, 1, 2, ... (13)

Setting

x0 = 2m = ℏ = 1 , V0 =
49
4
, (14)

we get
En = −(3 − n)2 ⇒ E0 = −9 , E1 = −4 , E2 = −1 . (15)

According to the exact answer, the three eigenvalues written above exhaust the dis-
crete energy spectrum of the Rosen-Morse potential.
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2. From eq. (15) we see that at n = 3 the energy of the bound state hits zero. This
result cannot be trusted, since the LO WKB fails to reproduce the levels whose
energy equals the asymptotics of the potential of the exponential type (see Problem
3 of Problem Set 5). In fact, there cannot be any bound states with the energies
coinciding with the asymptotics of the potential at x → ±∞ (provided that these
asymptotics are the same). Hence, the n = 3-level is fake. All n > 3-levels are
clearly fake too (they are either degenerate with the levels at n = 0, 1, 2, which is
impossible for the bound states, or have the energy smaller than the minimum of
the potential).

3. Tunneling through a parabolic barrier

1. The transmission coefficient D is given by

D = e
iπ
2 e−

1
ℏ

∫ x∗

−x∗ pdx , (16)

where ±x∗ are the turning points. Computation of the tunneling exponent is straight-
forward :∫ x∗

−x∗
pdx =

∫ x∗

−x∗

√
2m

(
V0

(
1 −

x2

x2
0

)
− E

)
dx

= x0

√
2mV0

∫ b

a

√
1 −

E
V0
−

x2

x2
0

dx
x0

= x0

√
2mV0

1
2

 x
x0

√
1 −

E
V0
−

x2

x2
0

+

(
1 −

E
V0

)
atan

x/x0√
1 − E

V0
− x2

x2
0


x=x∗

x=−x∗

= x0

√
2mV0

π

2

(
1 −

E
V0

)
,

(17)

where we used the relation 1 − (±x∗)2/x2
0 = E/V0. Finally,

D(E) = e
iπ
2 e−

x0
2ℏ (1−E/V0)π

√
2mV0 . (18)

2. The WKB approach reproduces well the value of the transmission coefficient pro-
vided that the tunneling exponent is large. Denoting δE = V0 −E, we have from eq.
(18),

δE ≫
ℏ

x0

√
2V0

m
. (19)
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4. Lifetime in a cubic potential

The lifetime of a particle in the well is determined by the tunneling probability, |D(E)|2.
If the energy E of the particle is small compared to the height of the barrier,

E ≪ Vmax =
4

27
V0x3

0 , (20)

then the integral in D(E) can be easily computed,∫ b

a
pdx =

∫ b

a

√
2m

(
V0(x2x0 − x3) − E

)
dx

=
√

2mV0

∫ b

a

√
x2x0 − x3 −

E
V0

dx

≈
√

2mV0
2

15

[√
x0 − x(3x2 − x0x − 2x2

0)
]x0

0

=
4

15

√
2mV0x5/2

0 .

(21)

In going to the third line, we neglected the term E/V0, since its contribution to the integral
becomes essential only near the turning points a and b, where the integrand is small. For
the same reason, we approximated the limits of integration as a ≈ 0, b ≈ x0.

The lifetime is given by τ = T/|D(E)|2, where T is the period of classical oscillations
in the well,

T =
∮

dt = 2
∫ a2

a1

mdx
p(x)

≈

√
2m
E

∫ a2

a1

dx√
1 − x0V0

E x2

=

√
2m

x0V0

arcsin

√
x0V0

E
x

a2

a1

=

√
2m

x0V0
π .

(22)

Again, since E ≪ V0, we used the quadratic approximation for the potential near the
bottom of the well,

V ≈ V0x0x2 , x ≪ x0 , (23)

and the turning points a1, a2 of the classical oscillations are determined from the equation

E = V0x0a2
1,2 , (24)

which gives a1 = −a2 =
√

E
V0 x0

. From eqs. (21) and (22) we have

τ =

√
2m

x0V0
π exp

(
8

15ℏ

√
2mV0x5/2

0

)
. (25)
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5∗. Super-WKB approach

1. We substitute the relation V = W2 − ℏ
√

2m
W ′ into the Bohr-Sommerfeld quantization

condition and expand to the LO in ℏ. This gives,∫ b

a

√
2m(E − U) dx =

∫ b

a

√
2m(E −W2) dx +

ℏ

2

∫ b

a

W ′

√
E −W2

dx + O(ℏ2)

= πℏ

(
n +

1
2

)
.

(26)

By a and b we now understand the turning points of the function W2. Assuming

W(a) = −W(b) , (27)

one finds
ℏ

2

∫ b

a

W ′

√
E −W2

dx =
ℏ

2
arcsin

W
√

E

∣∣∣∣∣∣b
a

=
πℏ

2
+ O(ℏ2) . (28)

Thus, to the LO ∫ b

a

√
2m(E −W2) dx = πℏn , n = 0, 1, 2, ... (29)

This is the so-called LO Super-WKB (or SWKB for short) quantization condition.
If, on the other hand, W(a) = W(b), the term (28) vanishes, and we have∫ b

a

√
2m(E −W2) dx = πℏ

(
n +

1
2

)
. (30)

2. Here we assume that the superpotential obeys eq. (27). Since the integrand in eq.
(28) is nonnegative, at n = 0 one must have a = b. But then W(a) = W(b) = 0, and

E0 = W(a)2 = W(b)2 = 0 . (31)

3. The quantum systems whose superpotential possesses the property (27) are called
supersymmetric. It turns out that for such systems, the energy of the ground state
is exactly zero. Hence, according to eq. (31), the LO SWKB is exact at n = 0.
This makes it differ from the standard WKB whose accuracy is supposed to be
low at low n. Therefore, one can expect the SWKB to give better predictions for
supersymmetric potentials. To check this, consider the following potential,

V(x) = −
1
x
+

x(x + 2)
(1 + x + 1

2 x2)2
+

1
16

. (32)

The corresponding superpotential is given by (see figure 1) 1

W(x) =
x6 − 16x4 − 56x3 − 108x2 − 240x − 192
4x(x2 + 2x + 2)(x3 + 6x2 + 18x + 24)

. (33)
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Figure 1 – The left panel : the potential (32). Shown also are the asymptotics of the
potential at infinity (the red line), and the first five eigenvalues. The right panel : the
superpotential (33).

n En × 102 WKB SWKB
0 0 −47.002 0
1 3.472 1.644 3.460
2 4.688 4.019 4.682
3 5.25 4.931 5.247
4 5.556 5.407 5.554
5 5.740 5.632 5.739
6 5.859 5.788 5.859
7 5.941 5.892 5.941
8 6 5.965 6.000
9 6.043 6.017 6.043

Table 1 – The first 10 eigenvalues of the potential (32).

Here, for simplicity, we move to dimensionless notations and set 2m = ℏ = 1. Now
we compute numerically the energy levels by the means of the Bohr-Sommerfeld
quantization condition, by the formula (29), and by the exact formula

En =
1

16
n(n + 4)
(n + 2)2 , n = 0, 1, 2, ... (34)

The results are summarized in table 1. We see that the LO SWKB achieves the
accuracy 10−3 at n = 5, at which the standard WKB can only give the accuracy ≈
2 ·10−2. Note, however, that for the potentials without supersymmetry (in particular,
for which E0 , 0), the convergence of the SWKB method is not much superior to
that of the WKB.

6∗. Scattering off the peak

As the energy E of the particle approaches zero, the turning points, where its wave func-
tion crosses the potential barrier, converge to the single point x0 = 0. Hence, for small

1. For details, see DeLaney, David et al. Phys.Lett. B247 (1990) 301-308.
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enough energies it makes sense to continue the wave function of the particle directly from
one classically allowed region to another, thus avoiding the classically forbidden region.
For this to be possible, one has to construct a region in the plane of complex x, where the
wave function can be approximated by the WKB expressions of the plane-wave type.

1. Near the origin, the potential V can be expanded as

V(x) =
kx2

2
+ bx3 + O(x4) . (35)

It will be convenient to think of k ≡ V ′′(0) as the curvature of the potential at zero
point. Then, b ∼ k′(0) ≡ k′. To neglect the third-order term in eq. (35), one has to
make sure that

|bx3| ≪ |kx2| ⇒ |x| ≪
∣∣∣∣∣ k
k′

∣∣∣∣∣ . (36)

In other words, |x| must be small compared to the characteristic length of change of
the curvature.

Next, we expand the momentum in the ratio |E/V(x)|,

p(x) =
√

2m(E − V(x)) ≈
√
−2mV(x)

(
1 −

E
2V(x)

)
. (37)

For this expansion to work, one should require |E/V(x)| ≪ 1. Applying the quadra-
tic approximation for the potential, we rewrite this condition as

|x| ≫
∣∣∣∣∣Ek

∣∣∣∣∣ 1
2

. (38)

Overall, the region R is defined by the conditions (36) and (38) :∣∣∣∣∣Ek
∣∣∣∣∣ 1

2

≪ |x| ≪
∣∣∣∣∣ k
k′

∣∣∣∣∣ . (39)

Clearly, this inequality can be satisfied for some |x| provided that |E| is small en-
ough.

2. First, we should check that the LO WKB approximation is applicable in the region
R. Making use of eqs. (37) and (35), we have

|n′| ≪ 1 ⇒ |x| ≫

∣∣∣∣∣∣ℏ2

k

∣∣∣∣∣∣ . (40)

This is compatible with the inequality (39) if∣∣∣∣∣ d
dx

1
k

∣∣∣∣∣ ≪ ℏ−2 , (41)

that is, the characteristic length at which the curvature radius changes must be large
in Planck units. With this assumption, we can use the LO WKB in the region R.
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To the right side from the turning point, we have the wave function transmitted
through the barrier,

ψx>0 =
d
√

p
e

i
ℏ

∫
pdx ≈ d(mk)−

1
4 x

i
ℏE
√

m
k −

1
2 e

i
ℏ

x2
2

√
mk . (42)

Note the unusual dispersion relation for this function : x enters quadratically in the
phase factor. If we restore the time-dependence of the wave function, the phase
factor becomes

e
i
ℏ

(
x2
2

√
mk−Et

)
. (43)

To keep the phase profile unchanged, x2 must increase as the time increases. For
x > 0, this implies the growth of x. Hence, eq. (42) describes the right-moving
wave, as it should.

Let us now write the wave function to the left side from the turning point,

ψx<0 =
r
√

p
e

i
ℏ

∫
pdx +

q
√

p
e−

i
ℏ

∫
pdx

≈ r(mk)−
1
4 (−x)

i
ℏE
√

m
k −

1
2 e

i
ℏ

x2
2

√
mk + q(mk)−

1
4 (−x)−

i
ℏE
√

m
k −

1
2 e−

i
ℏ

x2
2

√
mk .

(44)

The first term in this expression is characterized by the phase factor (43). But now
x < 0, so, to keep the phase unchanged, x must run towards −∞ as the time in-
creases. Hence, the first term represents the left-moving wave, that is, the wave
reflected from the barrier. Similarly, we conclude that the second term describes the
incident wave, hence we set q = 1.

x0

x

Figure 2 – The region R in the plane of complex x, and the continuation contour.

3. Continued to the complex plane, R becomes a ring centered around the turning
point (see figure 2). We take the function (42) and continue it to the region x < 0
along the path in R going in the upper semiplane. This amounts to the replacement

x|x>0 = Rei·0 → Reiπ = (−x)eiπ|x<0 . (45)

Making this replacement, we restore the first term of the function (44) and obtain
the connection formula

r = de−
π
ℏ E
√

m
k e−

iπ
2 . (46)
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It gives one relation between the reflection and transmission coefficients R = |r|2,
D = |d|2. Combining it with the unitarity condition, we have{

R = De−2ϵ

R + D = 1
, ϵ =

π

ℏ
E

√
m
k
. (47)

The solution of this system is

D =
1

1 + e−ϵ
, R =

e−ϵ

1 + e−ϵ
. (48)

Recall that these formulas are valid while the inequalities (39) and (41) fulfill.

4. Taking the limit ϵ → 0 in eq. (48), we find

R = D =
1
2
. (49)

This nice result tells us that the quantum particle scattering off the parabolic peak
has equal probabilities to slide forward and to bounce back.
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