
QUANTUM PHYSICS III
Solutions to Problem Set 3 24 September 2024

1. On validity of the leading-order (LO) WKB approximation

1. Substituting the wave function

ψ = e
i
ℏS , S = S 0 +

ℏ

i
S 1 +

(
ℏ

i

)2

S 2 + ... (1)

into the Schroedinger equation, we get

−iℏS ′′ + S ′2 = p2 . (2)

Expanding this up to O(ℏ2) and equating the ℏ2-terms, we obtain

S ′′1 + 2S ′0S ′2 + S 2
1 = 0 ⇒ S ′2 = −

1
2S ′0

(S ′′1 + S ′21 ) . (3)

Recall that
S ′0 = ±p , S 1 = −

1
4

log p2 . (4)

Hence,

S ′2 =
1

8p3 (2pp′′ − 3p′2) , (5)

or, using the relation p =
√

2m(E − V),

S ′2 = −
1

32
√

2m

(
5V ′2

(E − V)5/2 +
4V ′′

(E − V)3/2

)
. (6)

2. The LO WKB approximation is applicable if

ψ = e
i
ℏ (S 0+

ℏ
i S 1)(1 + o(1)) . (7)

This means that all exponents containing the higher-order terms must be close to
one,

|eiℏn−1S n | = 1 + o(1) ⇒ |ℏn−1S n| ≪ 1 , n ⩾ 2 . (8)

3. We notice that S ′2 can be rewritten as

S ′2 =
1
4

d
dx

(
p′

p2

)
+

1
8

p′2

p3 , (9)

and, hence,

|ℏS 2| =

∣∣∣∣∣∣14ℏ p′

p2 +
1
8

∫ x

ℏ
p′2

p3 dx

∣∣∣∣∣∣
⩽

1
4

∣∣∣∣∣ℏp′

p2

∣∣∣∣∣ + 1
8

∫ x
∣∣∣∣∣∣ℏp′2

p3

∣∣∣∣∣∣ dx =
1
4
|n′| +

1
8

∫ x
∣∣∣∣∣∣n′2n

∣∣∣∣∣∣ dx .
(10)

Thus, from |n′| ≪ 1 and
∫ x
|n′2n−1| dx ≪ 1 it follows that |ℏS 2| ≪ 1.
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4. Differentiating the expression for the momentum, we find

p′ =
−2mV ′

2p
=

m
p

F , F = −V ′ . (11)

Next, we notice that
ℏ

p
F = nF ∼ δA , (12)

where δA is a work done by the force F on the distance n. Finally,

Tkin =
p2

2m
, (13)

and we have

|n′| =

∣∣∣∣∣ℏ p′

p2

∣∣∣∣∣ = ∣∣∣∣∣ℏp pp′

m
m
p2

∣∣∣∣∣ ∼ ∣∣∣∣∣nF 2m
p2

∣∣∣∣∣ ∼ ∣∣∣∣∣ δA
Tkin

∣∣∣∣∣ ≪ 1 . (14)

2. On accuracy of the LO WKB approximation

1. In the classically forbidden region, the exponentially decaying LO WKB wave func-
tion is given by (up to a constant multiplier)

ψ =
1√
|p|

e−
1
ℏ

∫ x
x0
|p|dx

. (15)

For the potential

V(x) = V0

√
x
x0
, x > 0 (16)

we have at x > x0

|p| =

√
2V0

(√
x
x0
− 1

)
. (17)

Integrating |p|, we arrive at

ψ =

(
2V0

(√
x
x0
− 1

))−1/4

exp

−4
√

2V0

15ℏ
x0

(√
x
x0
− 1

)3/2 (
3
√

x
x0
+ 2

) . (18)

In the limit x ≫ x0, this simplifies to

ψ ∼ V−1/4
0 (x/x0)−1/8e−

4
√

2V0
15ℏ x−1/4

0 x5/4
. (19)

2. One requires the LO result (18) to be accurate to 1 percent in the region x > 2x0.
This means, in particular, that the modulus of the NLO correction ℏS 2 must not
exceed 10−2 in that region, that is

|ℏS 2|x>2x0 ⩽ 10−2 . (20)
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To find S 2, we substitute the expression for the momentum (17) into eq. (5) and
integrate over x. The result is

S 2 =

3
x
x0
− 4

√
x
x0
+ 6 − 3

√√
x
x0
− 1

(√
x
x0
−

x
x0

)
tan−1

(√√
x
x0
− 1

)
96x0

√
2V0

√
x
x0

(√
x
x0
− 1

)3/2 . (21)

This is a monotonically decreasing function of x/x0, hence the condition (20) im-
plies

|ℏS 2|x=2x0 ⩽ 10−2 . (22)

We have
|ℏS 2|x=2x0 ≈ 0.14

ℏ
√

V0x0
, (23)

so,

V0 ≳
196ℏ2

x2
0

. (24)

3. On asymptotics of the potential in the WKB approximation

1. At first glance it may seem that the power-like decreasing potential cannot endanger
the validity of the WKB approach, since in the classically forbidden region the
WKB wave function decays much faster (exponentially fast). Let us see, however,
that this is not so. We have to verify that

|n′| ≪ 1 , |S 1| ≫ |ℏS 2| , |ℏS 2| ≪ 1 , x→ ∞ . (25)

Let the potential behave as

V(x) ∼ x−n , n > 0 , x→ ∞ . (26)

In the following reasoning it is important that the energy of the particle coincides
with the asymptotics of the potential at infinity (in our case, zero). Then, for the
momentum we have

p ∼ x−n/2 . (27)

We can now check if the conditions (25) hold in the limit x→ ∞. For example,

|ℏS 2| ∼ ℏxn/2−1 ≪ 1 ⇒
n
2
− 1 < 0 ⇒ n < 2 . (28)

Next,
|S 1| ∼

n
4

log x ≫ 1 for any n > 0 . (29)

Finally,
|n′| ∼ ℏxn/2−1 ≪ 1 ⇒ n < 2 . (30)

Note that the case n = 2 is special and cannot be resolved without additional infor-
mation about the potential. Hence, our best estimate is n < 2.
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2. From the above we see that if the potential decreases faster than x−2, the WKB
approach fails to describe the decaying wave function at arbitrary large x. We also
observe that any asymptotics of the form

V(x) ∼ x−k , k < 2 (31)

passes our tests of validity. But what if the potential falls off faster than any of (31),
but still slower than x−2 ? Long story short, anything can happen. As an example,
consider the following behavior,

V(x) ∼
(
log x

x

)2

. (32)

Here we have

p ∼
log x

x
, p′ ∼

1
x2 −

log x
x2 ∼

log x
x2 , p′′ ∼

log x
x3 . (33)

So, for example,

S ′2 ∼
1

x log x
⇒ |ℏS 2| ∼ ℏ log log x . (34)

This increases with x ! Thus, the LO approximation is wrong in this case. Note in
parentheses that the other two conditions in (25) are satisfied.

4∗. WKB expansion beyond the LO

1. Substituting the expansion (1) into eq. (2) and extracting the ℏn-term, n ⩾ 2, we get

S ′′n−1 +

n∑
j=0

S ′jS
′
n− j = 0 , (35)

from which one concludes that

S ′n = −
1

2S ′0

S ′′n−1 +

n−1∑
j=1

S ′jS
′
n− j

 , n ⩾ 2 . (36)

2. (a) From eqs. (4) and (36) it is clear that all S ′n are polynomial expressions of the
momentum p and its derivatives. Since p ∼ (E − V)1/2, any S ′n contains multipliers
of the form

(E − V)−n , (E − V)−n+ 1
2 (37)

with n an integer number. Evidently, the term S ′n can be a non-real-valued function
if and only if it contains fractional powers of E − V . Note also that differentiation
with respect to x cannot convert a fractional power of E − V into an integer power
and vice versa. Hence, if S ′n is real (or imaginary) at some x, so does its derivative
S ′′n .
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Now we prove that all even terms S ′2n contain just fractional powers of E −V , while
all odd terms S ′2n+1 contain only integer powers of E − V . Schematically,

S ′2n 2 {(E − V)−k , k ∈ N} , S ′2n+1 2 {(E − V)−k+ 1
2 , k ∈ N} . (38)

The proof is by induction. For the pair S ′1, S ′2 the statement is obviously true. Let
it be true for all pairs up to S ′2n−1, S ′2n. Then we show that it also holds for the
pair S ′2n+1, S ′2n+2. Consider first the odd term S ′2n+1. The recurrent expression (36) is
rewritten as

S ′2n+1 = −
1

2S ′0
(S ′′2n + S ′1S ′2n + S ′2S ′2n−1 + ... + S ′2nS ′1) . (39)

By the induction hypothesis, S ′′2n has only fractional powers of E − V . The sub-
sequent series consists of the products of an odd and an even terms, hence all oc-
currences of (E−V) in the series are also supplemented with the half-integer powers.
Finally, multiplying by S

′−1
0 reduces the powers of all (E − V)-terms by one half,

thus making them all integer. We conclude that the second statement in (38) is true.
Let us move to the even term, S ′2n+2. We have,

S ′2n+2 = −
1

2S ′0
(S ′′2n+1 + S ′1S ′2n+1 + S ′2S ′2n + ... + S ′2n+1S ′1) . (40)

By what has been just proved, S ′′2n+1 2 {(E − V)−k+ 1
2 , k ∈ N}. The series next to

S ′′2n+1 contains the products of two odd or two even terms. All such products are also
free of the fractional powers of E − V . Indeed, in the odd terms there are no such
powers by the induction hypothesis, while all inclusions of E −V in the products of
even terms are of the form

(E − V)−
a
2 · (E − V)−

b
2 = (E − V)−

a+b
2 . (41)

Since, by the induction hypothesis, a and b are odd, their sum a + b is even, so
the r.h.s. of eq. (41) is an integer power of E − V . Multiplying the expression in
parenthesis in eq. (40) by S

′−1
0 converts all powers of E−V into half-integers. Thus,

the first statement in (38) is also true, and this completes the proof.
We conclude that the odd terms S ′2n+1 do not contain any square roots of E − V
and, hence, they are all real. Meanwhile, we have also proved a perhaps somewhat
nontrivial fact that, at a given point x, all S ′2n-terms can be either simultaneously
real or simultaneously imaginary. This means that the splitting of the wave function
domain onto classically allowed and classically forbidden regions is precise in all
order in ℏ. In particular, the turning points, computed by the means of the LO WKB
approximation, cannot shift when more terms in the expansion (1) are taken into
account.
(b) Real-valuedness of S ′2n+1 implies that S 2n+1 do not contribute to the phase of the
wave function. So, we can rewrite eq. (1) as

ψ = Ae
i
ℏ S̃ , (42)
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where all odd terms are collected into the amplitude A, while S̃ now contains only
even terms. Plugging this form of ψ into the Schroedinger equation and extracting
its real and imaginary parts, we get the system of equations for A and S̃ ,S̃ ′2 − ℏ2 A′′

A
= p2 ,

2S̃ ′A′ + AS̃ ′′ = 0 .
(43)

The second of these equations is integrable with respect to A ! The answer is

A =
C
√

S̃ ′
(44)

with C some constant. We conclude that the amplitude of the wave function is fully
determined by its phase (up to a constant multiplier). Expanding (44) with respect
to ℏ, one can relate the terms with the odd powers of ℏ to the differentials of the
terms with the even powers of ℏ. Moreover, as all S ′2n are simple polynomials of p
and its derivatives, the terms S 2n+1 are expressed explicitly through p, p′, p′′, etc.
Hence, all S ′2n+1 are total derivatives of those expressions.
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