QUANTUM PHYSICS III

Solutions to Problem Set 2 17 September 2024

2.1 Classical limit of the harmonic oscillator

1. Recall that for the coherent states ala) = @|a), and (@]a’ = a*(a|. Hence,
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and AH, = hwle|. Classical approach is applicable when AH,/(H), < 1, that s,
when |a| > 1.
For N = a'a we have similarly (N), = |a|?, and

(N2), = (ala’aa’alay = al*(alaa’|a)
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Therefore, AN, = |a|. Again, the classical limit AN, /(N), < 1 is achieved if
la| > 1.

For X and P we have,
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Once more, the classical approach is valid when AX, /(X)) < 1, AP, /(P), < 1,
or, equivalently, |@| > 1. Finally, we see that A)A(a . Af’a = h/2, i.e., the coherent
states minimize the uncertainty relation for the operators X and P.

from which one gets



2. The frequency of the pendulum oscillations is given by w = 2n/T, where T =
2m+/l/ g is the period of oscillation. Using the results of the p. 1, we have,
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The amplitude of oscillations x,, is nothing but the maximal value of (X),(7), hence
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as expected for the classical pendulum. Similarly,
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and the relation AH,/(H), < 1 holds.

2.2 Squeezed states

1. As any quantum state, the squeezed states |¥,) must be normalized to unity. For the
wave function in the x-representation, ¥,(x) = C¥,(Ax), this gives
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1 :f [ (x)* dx = c2f W, (Ax)]* dx = - = C*=2, (10)
since the coherent state wave function ¥, (x) is in turn normalized.

2. Let us write (X) in terms of the wave function ¥,(x) :

(o]

(X) = f (PAlXIx) (¥ )dx = f AP a(x) dx . (11)

Now it is easy to express (X) through (X),,

A ~ CHX)o _ K
Xy=c? f Ooxl‘Pa(/lx)Ide: yraia (12)

To calculate (P), it is convenient to use the momentum basis for the state |¥,),
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Then, one can write W ,(p) explicitly as a Fourier image of ¥,(x) and express the
latter through W, (x):
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Similarly, we have

N X%, N .
=y =, (15)
The dispersions are given by
. AX, 4 R o A N
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The conclusion is that the squeezed state |¥,;) minimizes the uncertainty relation.
Note, however, that so far we proved this only at one (initial) moment of time. Our
goal for the rest of the exercise is to find out the behavior of the dispersions (16) as
the state |¥,) evolves in time.

. In the coordinate representation the momentum operator P acts on a wave function
Y(x) by —ifi-0/0x. The values W(x) and W(x+a) are related via the Taylor expansion,

X n "
W(r+a)= ) S (). (17)
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We can think of the r.h.s. of this equation as the result of applying some operator
T(a) to W(x):
P(x+a) = T(@)P(x) . (18)

Comparing with eq. (17) it is easy to see that T'(a) is given explicitly by
T(a) = ena? , (19)

and this is the familiar expression for the displacement operator.
Now we want to use this logic when looking for a scaling operator S, such that

S W (x) = Va¥,(1x) . (20)
By analogy with eq. (19), we write
$1= e, 1)

where f(A1) is some unknown function of A, and G is an operator of infinitesimal
scaling. Since § , is required to be unitary, G must be hermitian.

The key observation now is that any scaling of x can be regarded as a shift of log |x|.
Thinking of log |x| as a new variable to be shifted in the function P, (e'°¢"), one can
guess G to be of the form (in the x-representation)

=XP. (22)

However, this operator is not hermitian, since X and P do not commute. To restore
hermiticity, we can use instead the symmetric combination of X and P:

(XP+ X):XP—@:—ih(xﬁ+—). (23)



Thus, the operator (21) with G given by eq. (23) is the desired unitary operator. It
remains to find the function f(1). To this end, we compute explicitly the action of

S, on W, (x),
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Comparing this with eq. (20), we find
f() =logA.
. The time-dependent vectors |¥,(¢)) and |V, (¢)) are related by
[¥a(0) = U¥) = US W) = U807 0oy = Sa(-DI¥a(®))
with § ,(~7) the scaling operator in the Heisenberg picture.

. Substituting the expressions for X and P through the ladder operators,
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into eq. (23), we obtain,

G = —ih

Plugging this into eq. (21), we have,

S.=exp (log/l (&2 - &”)) )

Let us now evolve it in time,
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Hence, S ,(—1) is obtained by simply converting the ladder operators &, a' in eq.

(29) to a(—t) and a'(-1),

S (=) = exp (IO%A (@*-n - a”(—t)))
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6. To compute the products S;(—I)&S' 1(—=1) and S;(—r)éﬁﬁ 2(=1), we make use of the
following identity, valid for some operators O and b,

e = b= [0.5]+ 53 [0[0.8]] + ..+ S [O[[0.B] ][+ @
In our case !
0=> log A(e*a” — e?'a?) | b=aora’ . (33)
We have,
[0,a] = log A e 2q | [0,a'] = log A ¢*“a
[0,10,4d]] = (log A)°a, [0,10,4"]] = (log )’a
[0,10,10,a]]] = (log H’e**a’,  [0,[0,[0,a"]] = (log H’¢*"a G4
Summing this up, we arrive at
St(~t)aS (1) = — a'e™**" sinhlog A + @ coshlog A , G39)

/l(—t)aTSﬂ(—t) = — ae* sinhlog A + &' coshlog A .

7. Let us finally combine all our prerequisites. To compute the dispersions AX, AP,
one needs to find the expressions for the following relations,

(FADIXI (1)) = (P (DIS T (=DXS (-D)|P,(1))

(PADIPIY (1)) = (PoDIS T (=0)PS (=0)¥a(D)) ,

(36)
(PAOIXP (D)) = (P OIS T(=DXS (=) T (- XS (=0)|P,(1)) ,
(PUDIPE2(0) = (P IS T (=DPS (=08 (=) PS (=1)|¥ (1)) -
They are computed easily by the means of egs. (27), (35), and knowing that
(Po(Dlal¥o (1) = a(t) = ae™",
(37)
(oDl o (1)) = (1) = a*e™" .
For example,
N h . )
MTaDOIX|F (1)) = A / —_— (2Re (ae"“”) coshlog A — 2Re (ae’“”) sinh log /l) ,
2mw (38)
D hma) —iwt iwt\ .:
EADIPIY0) = =~ (21m (¢e™™") coshlog A + 2Im (ae™') sinh log 1) .
The answer is
N h
(AX)? = I [cosh(21og ) — cos(2wr) sinh(2 log 1)]
(39)

A h
(AP)? = [cosh(2log 1) + cos(Rwt) sinh(21og 1)] .



(Note the magical contraction of all @-dependent terms.) Thus,

A A I
AX - AP = 3 \/1 + sinh*(2log A)(1 — cos2(Qw?)) . (40)

First of all, we see that the uncertainty relation (40) is minimized at t = 0. This is
in accordance with the result (16). At arbitrary 7 > 0 it is not minimized but neither
does it grow uncontrollably. In fact, the quantity AX - AP oscillates around the

average value 7/2 \/ 1 + 0.5 sinh?(2 log 1), and hits the minimum value 7/2 at any
t, = 5% with n an integer. Thus, although the squeezed states do not minimize the
uncertainty relation at any time, their dispersions are confined in a constant region
determined by the parameter A, and this property makes them close to the classical
systems. The behavior of (AX)? and (AP)? is shown on the figure below.
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. Let us use the following dimensionless notation for clarity:

a+at
h (41)

2 .
p= \/—PZ—i(&—&T),
himw

with the commutation relation [X, p] = 2i.
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Consider the following change of variable:

¥\ _(a b\(%
)L ol @

It is a canonical transformation only if the commutation relation is preserved. It is
trivial to see that
ad —bc =1 43)

is a sufficient condition.

To satisfy this relation, one can look at solutions of the form a = d = cos ¢, and
—b = ¢ = sin ¢, with ¢(¢) a time dependent phase left to determine.

One can write the transformed operators as a function of the ladder operators:

X =ae? +ate™
{ (44)

P = —i(ae — ate )
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One could compute Ax’Ap” explicitely, but the calculation is rather cumbersome.
From the previous question, we saw that the uncertainty relation is minimized for
t = 0, however not for finite . A way to minimize it for all # > 0 would be to “can-
cel” the effect of time evolution with the canonical transformation. In the Heisen-
berg picture, the ladder operators just pick up a phase with time:

{a(r) = beiv! )

fl—;-(l‘) — &1‘eiwt

From equation (44), the canonical transformation also only adds a phase shift ¢ to
the ladder operators. We can use it to cancel the time evolution, with:

¢(1) = wr, (46)

which guarantees that the uncertainty relation will be minimized at all times ¢ > 0.



