QUANTUM PHYSICS III

Solutions to Problem Set 1 10 September 2024

1. Gaussian Integrals

To compute the first integral, one can use the following trick. First, multiply /; by itself,
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and then compute the obtained expression using the polar coordinates,
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To compute I, and I3, we first note that
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2. A Gaussian packet
: : A > (p—po)? : :
1. Since the wave function ¥(p,0) = ———¢ 7 must be normalized to one, it
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2. Recall that by definition the Fourier image is (note our convention about 27 multi-
pliers)
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Substituting the expression for W¥(p, 0), we obtain,
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Thus, W(x, 0) is again a Gaussian function.
The dispersion of the operator A is defined as
(AA)” = (A% — (A) . (11)

Let us first compute Ap(0). We have

(p(0)) = f dp pl¥(p,0)* = f dp (p+ p)l¥(p + po, O =po,  (12)
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because the expression p |¥(p + po, 0)? is an odd function of p. Hence,

(Ap(0))* = f dp p*|¥(p,0)* - pg = f dp p*[¥(p+ po, O)* + py — pg = h* /40,
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and
Ap(0) = h/20 . (14)
Similarly, using the expression for W(x, 0), one obtains
Ax(0) =0 . (15)

Of course, the above expressions for the dispersions can be seen immediately from
the expressions for W(p, 0) and Y(x, 0), since the latter are Gaussian functions. Note
that Ax(0)Ap(0) = &/2, that is, the state |) minimizes the uncertainty relation for
the pair of operators x(0), p(0).

3. Solving the Cauchy problem gives
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To find W(x, 1), we make the Fourier transform of W(p,t) and use the results of
exercise 1. We have
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Doing the integral in p will result in an exponent which takes the form
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and of course some new normalisation constant in front. The reason that we focus
on the exponent is due to that we know this in the end will result in a Gaussian, and
the dispersion Ax can be read directly from the quadratic coefficient of x.

Carry on, we read the second order term in x in the exponent from eq.(18]),
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and the denominator of the real part is 40 + 722 /m?, with which (and eq.(16))) we
identify the dispersion
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When ¢ increases, Ax(f) grows as well, and the equality AxAp = %/2 is not valid
anymore : the wave packet is spreading. From eq. we note also that py/m is
nothing but the group velocity of the wave packet.

3. Quantum fluctuations

We assume that the system comprising the hill and the object on the top of it does not
interact with anything. This allows us to drop out the potential term in the Schrodinger
equation. The wave function of the object can now be taken Gaussian, like in the previous
exercise. On physical grounds we expect that the probability density for the object to fall
from the top of the hill is saturated at the time when its dispersion Ax(#) becomes equal to
the size of the top /. The dispersion is given by (see eq. (20))

n*r

(AX(Z))Z = 0'2 + W . (21)

1. Denote the fall time by #,. Consider the equality Ax(#)) = [ as an equation for
to = to(o) :
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Maximizing #, with respect to o gives
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2. Substituting o = 10~cm < [ into eq. gives
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4. Harmonic oscillator



1. Recall that H = fiw(a’a + 1/2) and [a,a’] = 1. We have

la, H] = hwla,a’a + 1/2] = hwla,a’a] = hw (aa*a - a"'aa)
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= liwla,a'la = hwa .
Similarly, [a', H] = —hwa’.
In the Heisenberg picture,
ih% =[a,H] = iwa = a(t) = a(0)e ™" . (26)
Therefore,
[a(),a" ()] = [a(0)e™™,a’ (0)e] = [a(0),a"(0)] = 1. (27)

2. One should express x(¢) and p(f) through a(¢) and o*(¢),
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and put them into H,
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where we made use of the conservation of H with time.

5. Gaussian integrals in more dimensions

1. The idea is to diagonalize the matrix A in order to reduce the integral into the pro-
duct of integrals of Gaussian functions. Let O be the desired orthogonal transfor-

mation,

0 'A0 = diag(1,, ..., Ay) , (30)
where A; are eigenvalues of A. The corresponding change of variables reads as fol-
lows,

y= Ox = dyldyN =detO -dx;..dxy =dx,..dxy , (31)

since O is orthogonal. Applying the transformation (31)) to the integral gives

(o] [o) 1
f f dxy...dxy exp(—ix’Ax+B’x)
« 1
f f dyr...dyy exp(—iy’ (O_IAO)y+B’0y)
1 & (32)
o [w dy;...dyy exp (—5 Z/liyl.z n Bny]

i=1

Il
8
8 8

8

e 1 & U _[@n)Y |
_ -oxp E;Bjoﬁai (O™NuBy | = g exp|5BA'B) -

4



2. Here one can use the following trick. First, given the exponent exp (—%xtAx), we
supplement it with the “source” exp(B'x) of the variable x. Then we differentiate
the source with respect to B; to obtain the factor x; in the integrand. Finally, at
the end of calculation we take the limit B = 0. Here is the implementation of this

program :
a,’xl...de Xi, Xi, €XP _EXAX
1 t !
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As for the average (x;, x;,X;,X;,), it is obtained by simply adding more differentials
d/dB;, with various i, and the result
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Thus,
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is reproduced straightforwardly. Note finally that any odd number of derivatives
inevitably gives some B;, appearing before the exponent, hence, after setting B = 0,
all such terms vanish, and

(xi,x%;,) = 0, if kis odd . (36)

6. A pen

At first glance, this problem seems quite similar to the Exercise 3. However there is an
important difference : in Exercise 3, the top of the hill was flat, i.e. the potential energy
surface was flat, at least in some neighborhood in phase space. It is not the case here :
even though the pen standing on its tip is a classical equilibrium, any small perturbation
will change the potential energy and make the pen fall.

It is instructive to first solve this problem classically. Consider a pen of length L and
mass m (distributed uniformly along the length). The only degree of freedom here is the tilt
angle 6, measurde relative to the vertical axis. One can use e.g. the Lagrangian formalism
to get an equation of motion :
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where w? = 3g/2L. We have an equation of motion similar to that of a pendulum, except
the sign is reversed. This is what gives the highly diverging behavior of our pencil, instead
of the oscillatory one of a normal pendulum.

To compute the time it would take pencil to fall, one would need to solve this dif-
ferential equation, and find the time 7" at which 8(T) = n/2. This is impossible to do
analytically. However this is a standard second order homogeneous differential equation,
so its solutions are all of the form :

6(t) = 6o fi (wr) + %fz(wt) (49)

with 6y and wy the initial tilt angle and angular velocity respectively.

But this is all classical, where does the quantumness comes in ? A pen is big enough to
be accurately described with the classical equation of motion ; however, there is one mo-
ment when quantum mechanics will matter : the initial conditions. One would be tempted
to start with 8y = w, = 0, i.e. zero tilt angle and zero angular velocity. This would lead to
an infinite time to fall ; however quantum fluctuations render this case impossible.

The tilt angle 6 and the angular momentum L = %—g = mL?/3 are canonically conju-
gate by defininition, so they obey the Heisenberg uncertainty relation :
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This means that at best, the initial conditions satisfy the following :
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We can parameterize these solutions with a € 0, +oo[ :

6y = Aa (52)
A

Wy = — (53)
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These can be put back into the equations of motion to yield

1
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Unfortunately, the rest cannot be done analytically. We have to solve 6,(T) = Oyax = 7/2
for different values of «, to find the @ that maximizes 7. Solving the differential equation
can be done numerically, which for m = 5 g and L = 10 cm yields a maximal time of 3.5
seconds.

Remark : details of how to do this numerically is beyond the scope of this course.
For whose who are curious, this blogpost goes more into the details. (it is also from this
reference that the value of 3.5 seconds was taken).


http://thevirtuosi.blogspot.com/2010/06/how-long-can-you-balance-quantum-pencil.html

