
QUANTUM PHYSICS III
Solutions to Problem Set 1 10 September 2024

1. Gaussian Integrals

To compute the first integral, one can use the following trick. First, multiply I1 by itself,

I2
1 =

∫ ∞

−∞

∫ ∞

−∞

dxdy e−
x2+y2

2 , (1)

and then compute the obtained expression using the polar coordinates,

I2
1 = 2π

∫ ∞

0
dr re−

r2
2 = 2π . (2)

Hence,
I1 =

√
2π . (3)

To compute I2 and I3, we first note that∫ ∞

−∞

dx e−
ax2

2 =

√
2π
a
, (4)

and ∫ ∞

−∞

dx e−
1
2 (x−x0)2

=

∫ ∞

−∞

dx′ e−
1
2 x′2 = I1 . (5)

So, we have

I2 =

∫ ∞

−∞

dx e−
1
2 ax2+bx =

∫ ∞

−∞

dx e−
a
2 (x− b

a )2
+ b2

2a =

√
2π
a

e
b2
2a , (6)

I3 =

∫ ∞

−∞

x2e−
ax2

2 = −2
d

da

∫ ∞

−∞

e−
ax2

2 = −2
d

da

√
2π
a
=

1
a

√
2π
a
. (7)

2. A Gaussian packet

1. Since the wave function Ψ(p, 0) =
A

(2π)1/4 e−
σ2

ℏ2
(p−p0)2

must be normalized to one, it

follows that ∫ ∞

−∞

|Ψ(p, 0)|2dp = 1 ⇒ A =

√
2σ
ℏ
. (8)
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2. Recall that by definition the Fourier image is (note our convention about 2π multi-
pliers)

Ψ(x, 0) =
1

(2πℏ)1/2

∫ ∞

−∞

dp Ψ(p, 0)e
i
ℏ px . (9)

Substituting the expression for Ψ(p, 0), we obtain,

Ψ(x, 0) =
√

2σ/ℏ
(2π)3/4

∫ ∞

−∞

dp e
−
σ2 p2

ℏ2
+

(
2σ2 p0
ℏ +ix

)
p
ℏ e−

σ2 p2
0

ℏ2 =
1

(2π)1/4σ
e

i
ℏ p0 xe−

x2

4σ2 . (10)

Thus, Ψ(x, 0) is again a Gaussian function.
The dispersion of the operator A is defined as

(∆A)2 = ⟨A2⟩ − ⟨A⟩2 . (11)

Let us first compute ∆p(0). We have

⟨p(0)⟩ =
∫ ∞

−∞

dp p|Ψ(p, 0)|2 =
∫ ∞

−∞

dp (p + p0)|Ψ(p + p0, 0)|2 = p0 , (12)

because the expression p |Ψ(p + p0, 0)|2 is an odd function of p. Hence,

(∆p(0))2 =

∫ ∞

−∞

dp p2|Ψ(p, 0)|2− p2
0 =

∫ ∞

−∞

dp p2|Ψ(p+ p0, 0)|2+ p2
0− p2

0 = ℏ
2/4σ2 ,

(13)
and

∆p(0) = ℏ/2σ . (14)

Similarly, using the expression (10) for Ψ(x, 0), one obtains

∆x(0) = σ . (15)

Of course, the above expressions for the dispersions can be seen immediately from
the expressions forΨ(p, 0) andΨ(x, 0), since the latter are Gaussian functions. Note
that ∆x(0)∆p(0) = ℏ/2, that is, the state |Ψ⟩ minimizes the uncertainty relation for
the pair of operators x(0), p(0).

3. Solving the Cauchy problem gives

Ψ(p, t) = Ψ(p, 0)e−
i
ℏω(p)t , ω(p) =

p2

2m
. (16)

To find Ψ(x, t), we make the Fourier transform of Ψ(p, t) and use the results of
exercise 1. We have

Ψ(x, t) =

√
2σ

(2π)3/4

∫ ∞

−∞

dp e
− 1

2 (2σ2+ iℏt
2m ) p2

ℏ2
+

(
2σ2 p0
ℏ +ix

)
p
ℏ e−

σ2 p2
0

ℏ2 (17)

Doing the integral in p will result in an exponent which takes the form(
2σ2 p0

ℏ2 +
ix
ℏ

)2 / (2σ2

ℏ2 +
it

mℏ

)
−
σ2 p2

0

ℏ2 (18)
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and of course some new normalisation constant in front. The reason that we focus
on the exponent is due to that we know this in the end will result in a Gaussian, and
the dispersion ∆x can be read directly from the quadratic coefficient of x.
Carry on, we read the second order term in x in the exponent from eq.(18),

(2σ2 p0/ℏ + ix)2

2σ2 + itℏ/m
=
−x2 + 4iσ2 p0/ℏ + 4σ4 p2

0/ℏ
2

2σ2 + iℏt/m
(19)

and the denominator of the real part is 4σ4 + ℏ2t2/m2, with which (and eq.(16)) we
identify the dispersion

∆p(t) = ∆p(0) , ∆x(t) = ∆x(0)

√
1 +

ℏ2t2

4m2σ4 . (20)

When t increases, ∆x(t) grows as well, and the equality ∆x∆p = ℏ/2 is not valid
anymore : the wave packet is spreading. From eq. (17) we note also that p0/m is
nothing but the group velocity of the wave packet.

3. Quantum fluctuations

We assume that the system comprising the hill and the object on the top of it does not
interact with anything. This allows us to drop out the potential term in the Schrödinger
equation. The wave function of the object can now be taken Gaussian, like in the previous
exercise. On physical grounds we expect that the probability density for the object to fall
from the top of the hill is saturated at the time when its dispersion ∆x(t) becomes equal to
the size of the top l. The dispersion is given by (see eq. (20))

(∆x(t))2 = σ2 +
ℏ2t2

4m2σ2 . (21)

1. Denote the fall time by t0. Consider the equality ∆x(t0) = l as an equation for
t0 = t0(σ) : (

ℏt0

2m

)2

= −σ4 + l2σ2. (22)

Maximizing t0 with respect to σ gives

σ =
l
√

2
, t0 max =

ml2

ℏ
∼

10−3kg · 10−4m2

10−34 kg·m2

s

= 1027s . (23)

2. Substituting σ = 10−9cm ≪ l into eq. (22) gives

t0 ≈
mlσ
ℏ
= 1018s . (24)

4. Harmonic oscillator
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1. Recall that H = ℏω(a†a + 1/2) and [a, a†] = 1. We have

[a,H] = ℏω[a, a†a + 1/2] = ℏω[a, a†a] = ℏω
(
aa†a − a†aa

)
= ℏω[a, a†]a = ℏωa .

(25)

Similarly, [a†,H] = −ℏωa†.
In the Heisenberg picture,

iℏ
da
dt
= [a,H] = ℏωa ⇒ a(t) = a(0)e−iωt . (26)

Therefore,

[a(t), a†(t)] = [a(0)e−iωt, a†(0)eiωt] = [a(0), a†(0)] = 1 . (27)

2. One should express x(t) and p(t) through α(t) and α∗(t),

x(t) =

√
ℏ

2mω
(α(t) + α∗(t)) ,

p(t) = −i

√
ℏmω

2
(α(t) − α∗(t)) ,

(28)

and put them into H,

H =
1

2m
p(x)2 +

1
2

mω2x(t)2 =
1

2m
p(0)2 +

1
2

mω2x(0)2

= ℏω
1
4

4α(0)α∗(0) = ℏω|α(0)|2 ,
(29)

where we made use of the conservation of H with time.

5. Gaussian integrals in more dimensions

1. The idea is to diagonalize the matrix A in order to reduce the integral into the pro-
duct of integrals of Gaussian functions. Let O be the desired orthogonal transfor-
mation,

O−1AO = diag(λ1, ..., λN) , (30)

where λi are eigenvalues of A. The corresponding change of variables reads as fol-
lows,

y = Otx ⇒ dy1...dyN = det O · dx1...dxN = dx1...dxN , (31)

since O is orthogonal. Applying the transformation (31) to the integral gives∫ ∞

−∞

...

∫ ∞

−∞

dx1...dxN exp
(
−

1
2

xtAx + Btx
)

=

∫ ∞

−∞

...

∫ ∞

−∞

dy1...dyN exp
(
−

1
2

yt
(
O−1AO

)
y + BtOy

)
=

∫ ∞

−∞

...

∫ ∞

−∞

dy1...dyN exp

−1
2

N∑
i=1

λiy2
i + BtOy


=

√
(2π)N

ΠN
i=1λi

exp

1
2

N∑
i=1

B jO jiλ
−1
i (O−1)ikBk

 =
√

(2π)N

det A
exp

(
1
2

BtA−1B
)
.

(32)
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2. Here one can use the following trick. First, given the exponent exp
(
−1

2 xtAx
)
, we

supplement it with the “source” exp(Btx) of the variable x. Then we differentiate
the source with respect to Bi to obtain the factor xi in the integrand. Finally, at
the end of calculation we take the limit B = 0. Here is the implementation of this
program : ∫ ∞

−∞

...

∫ ∞

−∞

dx1...dxN xi1 xi2 exp
(
−

1
2

xtAx
)

=

∫ ∞

−∞

...

∫ ∞

−∞

dx1...dxN xi1 xi2 exp
(
−

1
2

xtAx + Btx
)∣∣∣∣∣∣

B=0

=
d

dBi1

d
dBi2

∫ ∞

−∞

...

∫ ∞

−∞

dx1...dxN exp
(
−

1
2

xtAx + Btx
)∣∣∣∣∣∣

B=0

=

√
(2π)N

det A
d

dBi1

d
dBi2

exp
(
1
2

Bi

(
A−1

)
i j

B j

)∣∣∣∣∣∣
B=0

=

√
(2π)N

det A

(
A−1

)
i1i2
.

(33)

Thus,
⟨xi1 xi2⟩ =

(
A−1

)
i1i2
. (34)

As for the average ⟨xi1 xi2 xi3 xi4⟩, it is obtained by simply adding more differentials
d/dBip with various ip, and the result

⟨xi1 xi2 xi3 xi4⟩ = ⟨xi1 xi2⟩⟨xi3 xi4⟩ + ⟨xi1 xi3⟩⟨xi2 xi4⟩ + ⟨xi1 xi4⟩⟨xi2 xi3⟩ (35)

is reproduced straightforwardly. Note finally that any odd number of derivatives
inevitably gives some Bip appearing before the exponent, hence, after setting B = 0,
all such terms vanish, and

⟨xi1 xi2 ...xik⟩ = 0 , if k is odd . (36)

6. A pen

At first glance, this problem seems quite similar to the Exercise 3. However there is an
important difference : in Exercise 3, the top of the hill was flat, i.e. the potential energy
surface was flat, at least in some neighborhood in phase space. It is not the case here :
even though the pen standing on its tip is a classical equilibrium, any small perturbation
will change the potential energy and make the pen fall.

It is instructive to first solve this problem classically. Consider a pen of length L and
mass m (distributed uniformly along the length). The only degree of freedom here is the tilt
angle θ, measurde relative to the vertical axis. One can use e.g. the Lagrangian formalism
to get an equation of motion :

T =
1
2

∫ l=L

l=0
dml2θ̇2 (37)

=
m
2L

∫ l=L

l=0
dl l2θ̇2 (38)

=
mL
6
θ̇2 (39)
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V = g
∫ l=L

l=0
dm l cos θ (40)

=
mg
L

∫ l=L

l=0
dl l cos θ (41)

=
mgL cos θ

2
(42)

L = T −V (43)

=
1
6

mL2θ̇2 −
mgL cos θ

2
(44)

d
dt

(
∂L

∂θ̇

)
=
∂L

∂θ
(45)

⇔
1
3

mL2θ̈ =
mgL

2
sin θ (46)

⇔ θ̈ =
3g
2L

sin θ (47)

⇔ θ̈ = ω2 sin θ (48)

where ω2 ≡ 3g/2L. We have an equation of motion similar to that of a pendulum, except
the sign is reversed. This is what gives the highly diverging behavior of our pencil, instead
of the oscillatory one of a normal pendulum.

To compute the time it would take pencil to fall, one would need to solve this dif-
ferential equation, and find the time T at which θ(T ) = π/2. This is impossible to do
analytically. However this is a standard second order homogeneous differential equation,
so its solutions are all of the form :

θ(t) = θ0 f1(ωt) +
ω0

ω
f2(ωt) (49)

with θ0 and ω0 the initial tilt angle and angular velocity respectively.
But this is all classical, where does the quantumness comes in? A pen is big enough to

be accurately described with the classical equation of motion ; however, there is one mo-
ment when quantum mechanics will matter : the initial conditions. One would be tempted
to start with θ0 = ω0 = 0, i.e. zero tilt angle and zero angular velocity. This would lead to
an infinite time to fall ; however quantum fluctuations render this case impossible.

The tilt angle θ and the angular momentum L = ∂L
∂θ̇
= mL2θ̇/3 are canonically conju-

gate by defininition, so they obey the Heisenberg uncertainty relation :

∆θ∆L ≥
ℏ

2
(50)

This means that at best, the initial conditions satisfy the following :

θ0ω0 =
3ℏ

2mL2 ≡ A2 (51)
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We can parameterize these solutions with α ∈ ]0,+∞[ :

θ0 = Aα (52)

ω0 =
A
α

(53)

These can be put back into the equations of motion to yield

θα(t) = A
(
α f1(ωt) +

1
αω

f2(ωt)
)

(54)

Unfortunately, the rest cannot be done analytically. We have to solve θα(T ) = θmax = π/2
for different values of α, to find the α that maximizes T . Solving the differential equation
can be done numerically, which for m = 5 g and L = 10 cm yields a maximal time of 3.5
seconds.

Remark : details of how to do this numerically is beyond the scope of this course.
For whose who are curious, this blogpost goes more into the details. (it is also from this
reference that the value of 3.5 seconds was taken).
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