QUANTUM PHYSICS III

Solutions to Problem Set 13 17 December 2024

1. Non-relativistic limit of the Dirac equation

1. The Dirac equation

HY =&Y, H=cap+pm*+V, E=E+mc*, V=V({), (1)
is rewritten in terms of the two-component spinors ¢ and y as follows,
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Using the second equation of this system, one can express y through ¢ :
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Plugging this into the first equation of (2), we have, to the accuracy ¢2,
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. Let us rewrite eq. (4) in the form

s p> E p’
¢+ — p=Vd+_—¢
2m 2mc? 2m (5)

1 2 > — 1
55 (O PV - Po = HY.

The operator H is clearly Hermitian. The Lh.s. of the equation above is quite com-
plicated as it contains the nontrivial differential operator p?. To simplify the treat-
ment, it is convenient to make the change of variable :

pZ

&= 1+inzmcz¢5A¢‘ (6)
Then ¢ = A~'¢ and
AEé = HA'¢ | (7)
or
Eé=ATHAT'E = Hypt (8)

The operator H,4is again Hermitian, and it can be thought of as an effective Hamil-
tonian of the quantum system whose state is represented by the spinor &. Eq. (8) is
nothing but the stationary Schrodinger equation for this system.
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3. First, we expand A~! to the same accuracy as in eq. (4),

1p* 1
2 2m 2mc?

Al =1- +0(c™. 9)

Then, H, 4 becomes

1p* 1 P’
Hyp=1--— —+V
( 22m2m62)[2m

! (10)

1p* 1
+—— P .
2m 2mc? )

2. DV(F - P
(@-pVi@ ﬁ)] ( 2 2m 2mc?
Extracting the term which does not depend on ¢, we obtain the leading-order equa-

tion on &,
2

(p—+V)§:E§. (11)
2m
As expected, this is the standard non-relativistic Schrodinger equation.

4. Now let us compute the leading relativistic corrections to eq. (11). The quadratic in
¢! term in H,g reads

1

H(Z) — L
2m 2mc?

1 1 p2 p2
- PHV(E- ) — = LA G A 12
(@-PV@-P) 22mc? {Zm 2m . (12)

To bring this expression to the tractable form, we make use of the following operator
identity,

-

(3 (h) = (&’b)+i6—-(c7 xE) , (13)

valid for some vectorial operators @ and b. The product (¢ F)V(&- ) can therefore
be transformed as

(@-pV(@@-p)=[d-p.V]d-p+ V(@ PN P)
= —ih (F(VV)) & - j+ Vp? (14)
= —ih(VV)p + hé - (VV x §) + Vp* |

where in going to the second line we used the fact that

1B, f(0)] = =iV f(x) . (15)
Now, we can write H? in the form
HY =V, + Vo, + V5, (16)
where .
Vi= T A (17
VZ:%-WVX;?), (18)



and

1 1 1 1 11
Vy=— vV - p) + — 2
3T amoame ! P 2 me2 P 22m2 (19)
1 1 1 1
- AV 2 v].
Imamez VY 22 Imc PVl
Finally,
[p>. V] = pipiV = Vpipi = pipiV — p;Vpi + piVp; — Vpipi 20)
= pilpi, V1 + [pi, Vlpi = pi(=ih)V;V + (=ihV;V)p; ,
and the two terms in eq. (19) are combined into
1 1 11 1
= — \ - V,V+V,
Vs ST —— —ihVV - p) > %m m (p, V +V,;Vp,)(~ih)
1
—[Pi, V.V]
21)
1 1 (
= jh— —(=ih)V*V
2m 2me 22( i)
h2
=—AV.
8m?2c?

5. Clearly, the first term (17) in H,4 represents the correction to the relativistic energy
of the particle. To clarify the meaning of the other two, let us rewrite them for the
particular case of an electron moving in the central field of a nucleus of charge Z.
The potential of the problem is

7 2
Vi) = 25 (22)
r
Therefore, )
S Zec X O0VX
vy 28 _dvX ) (23)
rr Orr
and
AV = 4n8(%) - Ze* . (24)
Hence, the term V5 becomes
W’Ze*n
Vi= 55500 . (25)

Because of the presence of delta-function, it is called the contact (or Darwin) term.
Next,

v, = 27 2 wx ). (26)

L=37xp, s*:h%. 27)
So,
1z .
V= —253.1. (28)

2m2c? 3

Thus, V, represents the relativistic correction due to the spin-orbital interaction.
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2. Zitterbewegung

1. The Heisenberg equation
lh X] = [Xj, HD] (29)

can be converted into the valid differential equation on the functions x;(¢) provided
that we know how the latter commute with the Dirac Hamiltonian Hp. To find this,
we write

ihi; = [X;, Hp] (30)

and
ihx; = [x;, Hp] . (€29)

The last commutator is calculable straightforwardly : if
Hp = ca;p; + pmc” (32)

then eq. (31) gives
ihx; = caj[x;, p;] = ihica; . (33)

Next, we plug this result into eq. (30) and obtain
ihi; = cla;, Hp] = mc’[a;,f] = 2mc*a,B . (34)

In obtaining the third equality, we kept only the leading term in c¢. We also used
the Dirac representation of the Dirac matrices to compute the commutator [a;, B].
Finally,

. 1 1
ihx;= EZmzcs[ajﬁ,ﬁ] = £4m2csaj . (35)
In the r.h.s. of this equation we recognize the expression for x;,

1
l

Therefore, the differential equation on X;(¢) reads as follows,

4mPct
X () + -3 x;=0. 37
Its general solution is
2 2mc’t
xj(t) = asin e + b cos e (38)
/] h
Integrating this, we obtain
0 /] 2mcit N 7] bsi 2mc?t e d (39)
xi(t) = — acos sin .
/ 2mc? fi 2mc? 17}

Here a, b and d are arbitrary operators.



2. Egs. (33) and (34) are nothing but the relations the functions x;(f) must satisfy
at + = 0, where the Schrodinger and the Heisenberg representations of operators
coincide. Differentiating eq. (39) and comparing, we deduce

/] C 2mctt 2mc?t
Xj(f) = Xj(O) + % «@; S1n T + la’jﬁCOS

(40)

3. Eq. (40) describes a rapidly oscillating trajectory, with the period 7%/2mc* = 6 -
10722 5. The rapid motion of a “fermion at rest” is the Zitterbewegung, a peculiarity
in the relativistic quantum mechanical motion of spin 1/2 particle.

4. Because of this rapid motion of the Dirac particle, the net electric field the particle
experiences is averaged over its “blur”, and hence is somewhat different from the
electric field at the position itself. The averaging of the electric field gives rise to
the correction

V) = L2 41)
where 0x' = x'(t) — x'(0). The isotropy tells us that
((6x')(6x")) = L5 (6x')") = & i - (42)
3 4m?c?
Then, the correction to the potential energy is
(V) = %%AV , (43)

and we have reproduced the Darwin term (21).



