QUANTUM PHYSICS III

Solutions to Problem Set 11 26 November 2024

1. Properties of spherical Bessel functions

1. We can use the Taylor series for sinp = 3% —(‘(;L"f]z’;' . and the fact that -
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which can easily be proved by induction. We thus have a series expansion for j; :
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As p — 0, we can keep only the leading order (n = [), hence :
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The case of y; is similar, expanding the cosine in a Taylor series.
2. We can prove this by induction. The relation holds for / = 0 :
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Assuming the relation holds for a given /, we have :
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In the last line, we neglected the first term, because 1/p? decays faster than 1/p at
large p. The asymptotic for y; can be proved in a similar manner.



2. Scattering phase shift in a Yukawa potential

1. One has to start with the decomposition of the scattering amplitude in spherical
harmonics :

F < p) = ) QL+ Dfi(p)Py(cosb). (6)
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With the orthogonality relation of the hint, it is trivial to see that
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For |9, < 1, we can expand f; in first order in ¢; :
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2. (a) For ¢ > 0, Q,(¢) 1s positive. Thus when the potential is attractive, V, < 0,
hence 6; > 0.

(b) This condition translates to 1/p > 1/u < p > p, thus 1 + u?/2p* ~ u?/2p*.
In the series expansion, we can keep only the first term, since the next ones
will be at least 1/£? smaller. We obtain :
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3. Scattering off a spherical potential
1. Let us start with an impenetrable sphere
Ve oo forr <R, (10)
r) =
0 forr>R.

We will use the properties that the wave function must vanish at r = R because
the sphere is impenetrable. Therefore we have the following condition on the radial
part of the wavefunction :

Ri(P)ly=r = 0. (11)
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For r > R, the potential is zero. Hence, we can express R; as a linear combination
of spherical Bessel and von Neumann functions :

R/(r) = cos 6, j,(kr) — sin 6;y;(kr). (12)

Since we only care about the relative phase shift, we arbitrarily set the amplitude to
1. The boundary condition implies :

Ji(kR) cos 6; — y(kR) sind; = 0. (13)

Let us consider the [ = 0 case (s-wave scattering) specifically. The equation be-
comes

sin kR/kR
——————— = —tankR. 14
—coskR/kR an (19

The radial-wave function Ry(r) varies as :

tan o =

08 g sinkr — sindg coskr _ sin(kr + do)

R._ =
i=0(r) kr kr

(15)
with 6p = —kR. Therefore, if we plot rR;—o(r) as a function of distance r, we obtain
a sinusoidal wave that is shifted when compared to the free sinusoidal wave by an
amount R.

Let us now study the low- and high-energy limits. For kR < 1 :
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It is therefore justified to ignore ¢; with [ # 0. In other words, we have s-wave
scattering only which is actually expected for almost any finite-range potential at
low energy.

. Because ) = —kR regardless of whether kR is large or small, we obtain

do  sin® & )
o & =R*> forkR < 1. (18)

It is interesting that the total cross section given by
d
Tt = f =2 4Q = 4nR”. (19)

is four times the geometric cross section 7R>. By geometric cross section we mean
the area of the disc of radius R that blocks the propagation of the plane wave. Low-
energy scattering, of course, means a very large-wavelength scattering, and we do
not necessarily expect a classically reasonable result.



4. Scattering off a constant potential

1. Similar to the problem of a square potential in 1D, the idea is to solve the Schrodin-
ger equation on both regions r < R and r > R, and connect them by continuity.

For r < R, we have :

R((r) = Aji(kr), (20)
withO < E -V, = % There is no contribution from the von Neumann function,
because the wave function must not diverge at r — 0.

For r > R, we have :

Ri(r) = B[cos(6)) ji(kr) = sin(6)yi(kr)] 21

In order to find the three unknowns A, B and the scattering phase shift ¢;, we need
to match both the wave function and its spatial derivative at the boundary between
the two regions, r = R :

{A Ji(kR) = B[cos(6;) ji(kR) — sin(6,)y,(kR)]

. . . (22)
Akji(kR) = Bk |cos(8),(kR) - sin(6))y|(kR)|

To eliminate the normalization constants A and B, we can divide the first equation

by the second : '
kji(kR) _ cos(6;) ji(kR) — sin(6,)y(kR)

< = . . ; (23)
kji(kR)  cos(dy) jj(kR) — sin(6;)y;(kR)
We can isolate the scattering phase shift :
kj (kR) — kj,(kR)a
tan(6)) = Ji(kR) — Kk j;(kR) 24)

ky (kR) — kyi(kR)a

with @ = jj(kR)/ ji(kR).

As |Vy| < E and kR < 1, we also have kR < 1. Note that we cannot simply use
the asymptotic forms of j; and y; proved in the first exercise : the derivatives are
mixing different orders. This is why we use the identity showed in the hint. Hence

Ji(x) = (2+]1),, for x < 1, so ji+1(«kR)/ jI(kR) = 2’1‘53 to leading order. We also know
that y,(x) = — (2;11) ! for x < 1. Therefore the phase shift becomes
tan &, = (kR)? j(kR) /(21 + 3) — kR j .1 (kR)
(kR)*y(kR)/ (2 + 3) — kRy11(kR)
(kR)?(KkR)Y' /(21 + 3)!'] = (kR)*?/[(21 + )]
- —Q21 = D!M(kR)?/[21 + 3)(kR)*1] + (21 + D!/ (kR)™1] 25)
~ (KR! (kR)* — (kR)?
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where we ignore the first term in the denominator for kR <« 1. Clearly /[ = 0

dominates, and

E-V,
E

1 V() 1 2mVOR3
I|=-=(kRy’— = —=k
] 3( ) E 3 h?

1
tan 8y = §(kR)3 [ ~ 8y ~ sindy.  (26)
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The total cross section is

4 ., 160 m*VZR®

Otot = ﬁ sin 6() = 9 h4 (27)
2. The next most important term is the p-wave. The phase shift is
1 Vi .
tan o, = —E(kR)SEO ~ 6) ~ sind;. (28)
With just s- and p-waves the differential cross section is
d | _
@ __ |e“5" sin &y + 3¢ sin §; cos t9|2
1
~ 2 (sin2 0o + 6.cos(dy — 01) sin &g sin d; cos 9) .
which is of the form % = A+ Bcos 6. Since 0; < ¢y < 1 we have cos(6g—0;) ~ 1
and B 6sin¢ 3 2
Z_ =6- —(kR)*> = Z(kR)’. 30
A sind 45( ) 5( ) (30)
5. Scattering off -; potential
1. One has to solve the radial Schrédinger equation
wd R (ll+1)+A
S I et e = Eu,. 31
[ 2mdr*  2m ( r? ) = G

For A = 0, the known solution involves spherical Bessel functions j;(kr) and Neu-
mann functions y;(kr) :

u .
R = — = aijilkr) + biyi(kr), (32)
with b; = 0 to satisfy the boundary condition R;(r — 0) < oo. For A # 0, we have :
R, = a;ju(kr), (33)

where 7 is defined by the quadratic equation n(n + 1) = I(l + 1) + A.

2. The asymptotic form of R, for large r is :
R(r) ~ julkr) ~ %sin(kr - %) (34)
We want to compare this with the definition of the scattering phase shift :
R/(r) ~ % sin(kr — %T +0)) (35)

Solving for n yields :

-l VI+4UI+ 1)+ A)
= 5 )

n

(36)



Since we want to let n = [ for A — 0, we take the ”+” part here. For small A, we

. ~ A
use Taylor expansion to find n ~ [ + 575.

The phase shift §; for small A is approximately :

A
0= —————. 37
T2+ ) 7
The total cross section o is given by :
dn & . PATG
U—ﬁ;(2l+l)sm 5~ > e (38)

The series of inverses of odd integers diverges, hence the total scattering cross sec-
tion also diverges. This happens because the 1/r? potential is too long range : it
does not decay fast enough as r — co. We need at least a cubic decay V ~ 1/7° to
have a finite cross section.



