
QUANTUM PHYSICS III
Solutions to Problem Set 11 26 November 2024

1. Properties of spherical Bessel functions

1. We can use the Taylor series for sin ρ =
∑∞

n=0
(−1)nρ2n+1

(2n+1)! , and the fact that :

(
1
ρ

d
dρ

)l

ρ2n =

 (2n)!!
(2n−2l)!!ρ

2n−2l for n ≥ l,
0 otherwise,

(1)

which can easily be proved by induction. We thus have a series expansion for jl :

jl(ρ) =
∞∑

n=l

(−1)n+l(2n)!!
(2n + 1)!(2n − 2l)!!

ρ2n−l. (2)

As ρ→ 0, we can keep only the leading order (n = l), hence :

jl(ρ) ∼
(2l)!!ρl

(2n + 1)!
=

ρl

(2l + 1)!!
. (3)

The case of yl is similar, expanding the cosine in a Taylor series.

2. We can prove this by induction. The relation holds for l = 0 :

j0(ρ) =
sin ρ
ρ
, (4)

y0(ρ) = −
cos ρ
ρ
. (5)

Assuming the relation holds for a given l, we have :

jl+1(ρ) = (−1)l+1ρl+1
(
1
ρ

d
dρ

)l+1 sin ρ
ρ

= (−1)l+1ρl+1
(
1
ρ

d
dρ

)
(−1)lρ−l jl(ρ)

∼ −ρl d
dρ
ρ−l−1 sin(ρ − l

π

2
)

= −(−l − 1)ρ−2 sin(ρ − l
π

2
) − ρ−1 cos(ρ − l

π

2
)

∼
1
ρ

sin(ρ − (l + 1)
π

2
).

In the last line, we neglected the first term, because 1/ρ2 decays faster than 1/ρ at
large ρ. The asymptotic for yl can be proved in a similar manner.
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2. Scattering phase shift in a Yukawa potential

1. One has to start with the decomposition of the scattering amplitude in spherical
harmonics :

f (p′ ← p) =
∞∑

l=0

(2l + 1) fl(p)Pl(cos θ). (6)

With the orthogonality relation of the hint, it is trivial to see that

fl =
1
2

∫ 2π

0
dθ sin θ f (p′ ← p)Pl(cos θ)

= −
mV0

µ

∫ 2π

0
dθ

Pl(cos θ) sin θ
2p2(1 − cos θ) + µ2

= −
mV0

µ

∫ 1

−1
dζ

Pl(ζ)
2p2(1 − ζ) + µ2

= −
mV0

µ
Ql

(
1 +
µ2

2p2

)
.

For |δl| ≪ 1, we can expand fl in first order in δl :

fl =
eiδl sin(δl)

p
≈
δl

p
. (7)

Thus :

δl = −
mV0

µp
Ql

(
1 +
µ2

2p2

)
. (8)

2. (a) For ζ > 0, Ql(ζ) is positive. Thus when the potential is attractive, V0 < 0,
hence δl > 0.

(b) This condition translates to 1/p ≫ 1/µ ⇔ µ ≫ p, thus 1 + µ2/2p2 ≈ µ2/2p2.
In the series expansion, we can keep only the first term, since the next ones
will be at least 1/ζ2 smaller. We obtain :

δl = −
mV0

µp
·

2l+1l! p2l+2

(2l + 1)!! µ2l+2 = −
2l+1l! mV0

(2l + 1)!!µ2l+3 · p
2l+1. (9)

3. Scattering off a spherical potential

1. Let us start with an impenetrable sphere

V(r) =

∞ for r < R,
0 for r > R.

(10)

We will use the properties that the wave function must vanish at r = R because
the sphere is impenetrable. Therefore we have the following condition on the radial
part of the wavefunction :

Rl(r)|r=R = 0. (11)
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For r > R, the potential is zero. Hence, we can express Rl as a linear combination
of spherical Bessel and von Neumann functions :

Rl(r) = cos δl jl(kr) − sin δlyl(kr). (12)

Since we only care about the relative phase shift, we arbitrarily set the amplitude to
1. The boundary condition implies :

jl(kR) cos δl − yl(kR) sin δl = 0. (13)

Let us consider the l = 0 case (s-wave scattering) specifically. The equation be-
comes

tan δ0 =
sin kR/kR
− cos kR/kR

= − tan kR. (14)

The radial-wave function R0(r) varies as :

Rl=0(r) =
cos δ0 sin kr − sin δ0 cos kr

kr
=

sin(kr + δ0)
kr

, (15)

with δ0 = −kR. Therefore, if we plot rRl=0(r) as a function of distance r, we obtain
a sinusoidal wave that is shifted when compared to the free sinusoidal wave by an
amount R.
Let us now study the low- and high-energy limits. For kR ≪ 1 :

jl(kr) ≈
(kr)l

(2l + 1)!!
,

yl(kr) ≈ −
(2l − 1)!!

(kr)l+1 .

(16)

to obtain

tan δl =
−(kR)2l+1{

(2l + 1) [(2l − 1)!!]2
} . (17)

It is therefore justified to ignore δl with l , 0. In other words, we have s-wave
scattering only which is actually expected for almost any finite-range potential at
low energy.

2. Because δ0 = −kR regardless of whether kR is large or small, we obtain

dσ
dΩ
=

sin2 δ0

k2 = R2 for kR ≪ 1. (18)

It is interesting that the total cross section given by

σtot =

∫
dσ
dΩ

dΩ = 4πR2. (19)

is four times the geometric cross section πR2. By geometric cross section we mean
the area of the disc of radius R that blocks the propagation of the plane wave. Low-
energy scattering, of course, means a very large-wavelength scattering, and we do
not necessarily expect a classically reasonable result.
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4. Scattering off a constant potential

1. Similar to the problem of a square potential in 1D, the idea is to solve the Schrödin-
ger equation on both regions r < R and r > R, and connect them by continuity.
For r < R, we have :

Rl(r) = A jl(κr), (20)

with 0 < E − V0 ≡
ℏ2κ2

2m . There is no contribution from the von Neumann function,
because the wave function must not diverge at r → 0.
For r > R, we have :

Rl(r) = B
[
cos(δl) jl(kr) − sin(δl)yl(kr)

]
(21)

In order to find the three unknowns A, B and the scattering phase shift δl, we need
to match both the wave function and its spatial derivative at the boundary between
the two regions, r = R :A jl(κR) = B

[
cos(δl) jl(kR) − sin(δl)yl(kR)

]
Aκ j′l(κR) = Bk

[
cos(δl) j′l(kR) − sin(δl)y′l(kR)

] (22)

To eliminate the normalization constants A and B, we can divide the first equation
by the second :

k jl(κR)
κ j′l(κR)

=
cos(δl) jl(kR) − sin(δl)yl(kR)
cos(δl) j′l(kR) − sin(δl)y′l(kR)

(23)

We can isolate the scattering phase shift :

tan(δl) =
k j′l(kR) − κ j′l(κR)α
ky′l(kR) − κyl(kR)α

(24)

with α ≡ j′l(κR)/ jl(κR).
As |V0| ≪ E and kR ≪ 1, we also have κR ≪ 1. Note that we cannot simply use
the asymptotic forms of jl and yl proved in the first exercise : the derivatives are
mixing different orders. This is why we use the identity showed in the hint. Hence
jl(x) ≈ xl

(2l+1)!! for x ≪ 1, so jl+1(κR)/ jl(κR) = κR
2l+3 to leading order. We also know

that yl(x) = − (2l−1)!!
xl+1 for x ≪ 1. Therefore the phase shift becomes

tan δl =
(κR)2 jl(kR)/(2l + 3) − kR jl+1(kR)
(κR)2yl(kR)/(2l + 3) − kRyl+1(kR)

=
(κR)2(kR)l/[(2l + 3)!!] − (kR)l+2/[(2l + 3)!!]

−(2l − 1)!!(κR)2/[(2l + 3)(kR)l+1] + (2l + 1)!!/(kR)l+1]

≈ (kR)2l+1 (κR)2 − (kR)2

(2l + 3)!!(2l + 1)!!

=
(kR)2l+3

(2l + 3)!!(2l + 1)!!

[
κ2

k2 − 1
]
.

(25)

where we ignore the first term in the denominator for kR ≪ 1. Clearly l = 0
dominates, and

tan δ0 =
1
3

(kR)3
[E − V0

E
− 1

]
= −

1
3

(kR)3 V0

E
= −

1
3

k
2mV0R3

ℏ2 ≈ δ0 ≈ sin δ0. (26)
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The total cross section is

σtot =
4π
k2 sin2 δ0 =

16π
9

m2V2
0 R6

ℏ4 . (27)

2. The next most important term is the p-wave. The phase shift is

tan δ1 = −
1
45

(kR)5 V0

E
≈ δ1 ≈ sin δ1. (28)

With just s- and p-waves the differential cross section is

dσ
dΩ
=

1
k2

∣∣∣eiδ0 sin δ0 + 3eiδ1 sin δ1 cos θ
∣∣∣2

≈
1
k2

(
sin2 δ0 + 6 cos(δ0 − δ1) sin δ0 sin δ1 cos θ

)
.

(29)

which is of the form dσ
dΩ = A+ B cos θ. Since δ1 ≪ δ0 ≪ 1 we have cos(δ0 − δ1) ≈ 1

and
B
A
=

6 sin δ1

sin δ0
= 6 ·

3
45

(kR)2 =
2
5

(kR)2. (30)

5. Scattering off 1
r2 potential

1. One has to solve the radial Schrödinger equation[
−
ℏ2

2m
d2

dr2 +
ℏ2

2m

(
l(l + 1) + A

r2

)]
ul = Eul. (31)

For A = 0, the known solution involves spherical Bessel functions jl(kr) and Neu-
mann functions yl(kr) :

Rl =
ul

r
= al jl(kr) + blyl(kr), (32)

with bl = 0 to satisfy the boundary condition Rl(r → 0) < ∞. For A , 0, we have :

Rl = al jn(kr), (33)

where n is defined by the quadratic equation n(n + 1) = l(l + 1) + A.

2. The asymptotic form of Rl for large r is :

Rl(r) ∼ jn(kr) ∼
1
r

sin(kr −
nπ
2

) (34)

We want to compare this with the definition of the scattering phase shift :

Rl(r) ∼
1
r

sin(kr −
lπ
2
+ δl) (35)

Solving for n yields :

n =
−1 ±

√
1 + 4(l(l + 1) + A)

2
. (36)
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Since we want to let n = l for A → 0, we take the ”+” part here. For small A, we
use Taylor expansion to find n ≈ l + A

2l+1 .
The phase shift δl for small A is approximately :

δl = −
πA

2(2l + 1)
. (37)

The total cross section σ is given by :

σ =
4π
k2

∞∑
l=0

(2l + 1) sin2 δl ≈
π3A2

k2

∞∑
l=0

1
2l + 1

→ ∞. (38)

The series of inverses of odd integers diverges, hence the total scattering cross sec-
tion also diverges. This happens because the 1/r2 potential is too long range : it
does not decay fast enough as r → ∞. We need at least a cubic decay V ∼ 1/r3 to
have a finite cross section.
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