
QUANTUM PHYSICS III
Solutions to Problem Set 10 19 November 2024

1. Applicability condition of the first Born approximation

1. First, we rewrite the difference Ψin(x) − Ψ0(x) by using the relation between Ψin(x)
and Ψ0(x),

Ψ0(x) = Ψin(x) +
∫

d3p⟨x|Ĝ(Ep + iϵ)V̂ |p⟩⟨p|Ψin⟩

= Ψin(x) +
∫

d3pd3x′d3x′′⟨x|Ĝ(Ep + iϵ)|x′⟩⟨x′|V̂ |x′′⟩⟨x′′|p⟩⟨p|Ψin⟩

= Ψin(x) +
∫

d3x′G(Ep + iϵ, x, x′)V(x′)Ψin(x′) .

(1)

To the leading order in perturbation theory, in the last line one can replace G by
G0, since the difference between the free and the full Green functions provides the
next-order correction to Ψ0(x). Since

Ψin(x) ∼ eip·x , (2)

the inequality |Ψin(0) − Ψ0(0)| ≪ |Ψin(0)| is rewritten as∣∣∣∣∣∫ d3x′G0(Ep − iϵ, 0, x′)V(x′)Ψin(x′)
∣∣∣∣∣ ≪ 1 . (3)

Recall that

G0(Ep + iϵ, x, x′) =
m
2π

ei
√

2mEp |x−x′ |

|x − x′|
. (4)

Then, if V(x) contains only radial dependence on x, one can perform explicitly the
integration over angular variables in eq. (3) :∣∣∣∣∣∫ d3x′G0(Ep − iϵ, 0, x′)V(x′)Ψin(x′)

∣∣∣∣∣ = m

∣∣∣∣∣∣∣
∫ ∞

0
dr r2d cos θ

ei
√

2mEpr

r
V(r)eipr cos θ

∣∣∣∣∣∣∣
= m

∣∣∣∣∣∫ ∞

0
dr rei

√
2mEprV(r)

1
ipr

(
eipr − e−ipr

)∣∣∣∣∣
⩽

m
p

∣∣∣∣∣∫ ∞

0
drV(r)

(
1 − e2ipr

)∣∣∣∣∣ .
(5)

Hence, eq. (3) takes the form

m
p

∣∣∣∣∣∫ ∞

0
drV(r)

(
1 − e2ipr

)∣∣∣∣∣ ≪ 1 . (6)
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2. Consider the square well potential

V(r) =
{
−V0 , r < R ,
0 , r > R . (7)

In the slow scattering regime, pR ≪ 1, we can expand the exponent in eq. (6) to the
first order in pR to obtain

m
p

∣∣∣∣∣∣V0

∫ R

0
dr 2ipr

∣∣∣∣∣∣ ∼ mV0R2 ≪ 1 . (8)

3. Since σ ∼ 4π| f |2, and f ∼
m
2π

V0
4π
3

R3 ∼ mV0R3, we have by the virtue of eq. (8)

σ ∼ 4πm2V2
0 R6 = 4π(mV0R2)2 · R2 ≪ 4πR2 . (9)

4. In the regime of fast scattering, pR ≫ 1, the exponent in eq. (6) is a rapidly os-
cillating function which gives no overall contribution to the integral. Hence, the
applicability condition becomes

m
p

V0R ≪ 1, or

mV0R2 ≪ pR . (10)

Note that this requirement is much weaker than the condition (8) for slow particles.
This is consistent with expectations, since for a given potential the Born approxi-
mation is supposed to work better as the energy of the scattered particles increases.

5. Applying the condition (6) to the Yukawa potential,

V(r) =
α

r
e−µr, (11)

we have

m
p

∣∣∣∣∣∫ ∞

0
dr
α

r
e−µr sin pr

∣∣∣∣∣ = ∣∣∣∣∣mαp arctan
p
µ

∣∣∣∣∣ ∼


∣∣∣∣∣mαµ
∣∣∣∣∣ ≪ 1, p ≪ µ,∣∣∣∣∣mαp
∣∣∣∣∣ ≪ 1, p ≫ µ.

(12)

2. Towards the inverse scattering problem

1. Let R be the characteristic size of the potential V(r). The scattering amplitude at
zero momentum transfer f0 is given by

f0 ≈ − lim
q→0

2m
q

∫ R

0
dr rV(r) sin qr = −2m

∫ R

0
dr r2V(r) . (13)

Next, we compute the amplitude assuming that qR ≪ 1, this gives

f (q) ≈ −
2m
q

∫ R

0
dr rV(r)

(
qr −

1
6

(qr)3
)

= f0 − f0
(qR)2

10
.

(14)
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From here, one can extract the size R as

R2 ≈
10
f0

f0 − f (q)
q2 ≈

10
f0

| f ′(q)|
q
≈

10C
f0
. (15)

2. Assume that at small distances the potential exhibits the power-like behavior, V(r) ∼
rn. Then,

f (q) ≈ −
2m
q

∫ R

0
dr rn+1 sin qr = −

2m
qn+3

∫ qR

0
dy yn+1 sin y , (16)

where we denoted y = qr. If qR ≫ 1, one can replace the upper limit of integration
in the r.h.s. by infinity, hence at the large momentum transfers

f (q) ∼
1

qn+3 . (17)

Comparing this with the given data gives N
2 = n + 3, and

V(r) ∼ r
N
2 −3 , r → 0 . (18)

3. Truncation of the Coulomb potential

1. For the exponential shielding we find

f1(p→ p′) = −
2m
q

∫ ∞

0
dr r
α

r
e−

r
ρ sin qr

= −
2mα
2iq

∫ ∞

0
dr

(
er

(
iq− 1

ρ

)
− er

(
iq− 1

ρ

))
= −

iαm
q

 1
iq + 1

ρ

+
1

iq − 1
ρ

 = − 2αm
q2 + ρ−2 .

(19)

Note that the limit ρ → ∞ is well-defined unless q = 0. Hence, except for the
forward scattering cone, the amplitude for the exponentially truncated potential is
ρ-independent for ρ large enough. In fact, in this limit f1 reproduces the correct
scattering amplitude for the Coulomb potential.

2. Evaluation of the sharp cutoff gives,

f2(p→ p′) = −
2m
q

∫ ρ

0
dr r
α

r
sin qr = −

2mα
q2 (1 − cos qρ) . (20)

This is again a well-defined expression but the one which has no limit at ρ→ ∞. We
conclude that the answer for the scattering amplitude depends on how the truncation
of the Coulomb potential is made. At first sight this fact seems distressing, but let us
see how the truncation affects the quantities one can actually observe in experiment.
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3. Let us assume that qρ ≫ 1, or

ρ ≫
1

2p sin θ2
, (21)

which can always be justified unless θ = 0. Then, the ratio of the amplitudes (20)
and (19) averaged over the range of the scattering angles from θ to θ + ∆θ is equal
to

1
∆θ

∫ θ+∆θ

θ

dθ′
∣∣∣∣∣ f2(θ′)
f1(θ′)

∣∣∣∣∣ = 1 −
1
∆θ

∫ θ+∆θ

θ

dθ′ cos
(
2pρ sin

θ

2

)
. (22)

The integrand in the second term is a rapidly oscillating function that is integrated
to zero provided that

2pρ
(
sin
θ + ∆θ

2
− sin

θ

2

)
≫ 2π . (23)

For θ , π, one can expand the sin to the first power in ∆θ to obtain from eq. (23)

2pρ
1
2
∆θ

2
cos
θ

2
≫ 2π ⇒ ρ ≫ ρ0 =

4π
p∆θ cos θ2

. (24)

For θ = π, we expand the sin to the second power in ∆θ and find

2pρ
∆θ2

8
≫ 2π ⇒ ρ ≫ ρ0 =

8π
p∆θ2

. (25)

4. Given the in wave packet Ψin(p), the out wave function Ψout(p) is evaluated in the
first Born approximation as

Ψout(p) = Ψin(p) +
i

2πm

∫
d3p′δ(Ep − Ep′) f (p→ p′)Ψin(p′)

= Ψin(p) +
ip
2π

∫
dΩp′ f (p→ p′)Ψin(p′) .

(26)

In this expression, the first term represents the unscattered incident wave, and to
avoid seeing this term one normally restricts the measurements to non-forward di-
rections. Then, the difference between the amplitudes f1 and f2 contains the rapidly
oscillating term

cos qρ = cos
(
2pρ sin

θ

2

)
, θ , 0 , (27)

which, for ρ exceeding the size of the initial wave packet, integrates out to zero, and
makes no contribution to Ψout(p). Thus, the difference between the two methods of
screening the Coulomb potential has no observable effect.
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