QUANTUM PHYSICS III

Solutions to Problem Set 10 19 November 2024

1. Applicability condition of the first Born approximation

1. First, we rewrite the difference ¥;,(x) — Wo(x) by using the relation between ¥;,(x)
and Yy(x),

Wo(x) = ¥in(X) + f I*p(XIG(E, + i) VIp)(pI¥in)
= Wi (X) + f Epd®x' Ex"(XIG(E, + i)' XX |VIX"}x"Ip)pl¥i) (1)
= W,,(x) + f &X' G(E, + i, x, X ) V(X W (X) .
To the leading order in perturbation theory, in the last line one can replace G by

Gy, since the difference between the free and the full Green functions provides the
next-order correction to Wy(x). Since

Wi (x) ~ P, 2)

the inequality |¥;,(0) — Wo(0)| < [¥;,(0)| is rewritten as

' f &X' Gy(E, — i€, 0, X V(X )V, (x)| < 1. 3)
Recall that
m ei\/ZmEplx—x’\
Go(E, + i€, x,X) = ————— . 4)
2n |x—X/|

Then, if V(x) contains only radial dependence on x, one can perform explicitly the
integration over angular variables in eq. (3) :

0o ei\/ZmE],r )
’ f &X' Gy(E, - i€,0, X )V(X ¥, (X)| = m f dr r*dcos 6 V(r)e'rres?
0 r
00 ) 1 ) )
=m f dr re V"Er V() — (e”’r - e"”r)
0 Lpr
< m f drV(r)(l - eszr) .
P 1Jo
()
Hence, eq. (3) takes the form
= f drv(n(1-7)| < 1. 6)
P 1Jo
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2. Consider the square well potential

-Vo, r<R,
vio={ " TR g

In the slow scattering regime, pR < 1, we can expand the exponent in eq. (6) to the
first order in pR to obtain

m R
— Vo f dr 2ipr| ~ mVoR* < 1. (8)
p 0
. 2 m., An 3 .
3. Since o ~ 4n|f]°, and f ~ 2—V0?R ~ mVyR’, we have by the virtue of eq. (8)
Vs
o~ 47Tsz§R6 = 4n(mVyR*)? - R* < 4nR*. 9)

4. In the regime of fast scattering, pR > 1, the exponent in eq. (6) is a rapidly os-
cillating function which gives no overall contribution to the integral. Hence, the

applicability condition becomes ﬂVOR < 1,0r

mVoR*> < pR . (10)

Note that this requirement is much weaker than the condition (8) for slow particles.
This is consistent with expectations, since for a given potential the Born approxi-
mation is supposed to work better as the energy of the scattered particles increases.

5. Applying the condition (6) to the Yukawa potential,

Viry = Lo, (11)
r
we have
'ma' <1 <
00 - s p /l,
m f drc—ye_’” sin pr| = ‘m_a arctan E‘ ~ K (12)
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2. Towards the inverse scattering problem

1. Let R be the characteristic size of the potential V(r). The scattering amplitude at
zero momentum transfer f is given by

2m (R R
for —lim— f dr rV(r)singr = —2mf dr r*V(r) . (13)
q-0 g 0 0

Next, we compute the amplitude assuming that gR < 1, this gives
2m (R 1
fl@) ~—— f dr rV(r) (qr - —<qr>3)
q Jo 6

(qR)*
10 °

(14)
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From here, one can extract the size R as

L Wh=-re 10/ @l  10C
o & fo q Jo

2. Assume that at small distances the potential exhibits the power-like behavior, V(r) ~
7. Then,

R? (15)

2 R 2 R
flg) = ——mf dr /"' singr = - ’Zf dy y"'siny, (16)
q Jo q 0

where we denoted y = gr. If gR > 1, one can replace the upper limit of integration
in the r.h.s. by infinity, hence at the large momentum transfers

flg) ~ (17)

qn+3 ’
Comparing this with the given data gives % =n+ 3, and

Vi) ~ri?, r—0. (18)

3. Truncation of the Coulomb potential

1. For the exponential shielding we find

a _r

2 00
fip—p)= __mf dr r—e » singr
q Jo r
2ma [ o o
_ rig=35) _ rlia—5
= —2lq ; dr(e ( ) e ( )) (19)
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Note that the limit p — oo is well-defined unless ¢ = 0. Hence, except for the
forward scattering cone, the amplitude for the exponentially truncated potential is
p-independent for p large enough. In fact, in this limit f; reproduces the correct
scattering amplitude for the Coulomb potential.

2. Evaluation of the sharp cutoff gives,

, 2m (¥ a . 2ma
HLPp—p)= —?f dr r; singr = —?(1 —cosqgp) . (20)
0

This is again a well-defined expression but the one which has no limitat p — co. We
conclude that the answer for the scattering amplitude depends on how the truncation
of the Coulomb potential is made. At first sight this fact seems distressing, but let us
see how the truncation affects the quantities one can actually observe in experiment.



3. Let us assume that gp > 1, or

1
p>—7, 1)
2psin 3

which can always be justified unless 6 = 0. Then, the ratio of the amplitudes (20)
and (19) averaged over the range of the scattering angles from 6 to 6 + A is equal

to
1 0-+A0 15(0/)'-_ | 1
AG Jg A@ Al
The integrand in the second term is a rapidly oscillating function that is integrated
to zero provided that

0+A6

0
a9 49’ cos (2pp sin 5) . 22)

0+A0 . 0
’ —sini) > 2. 23)

2pp (sin

For 6 # &, one can expand the sin to the first power in Aé to obtain from eq. (23)

1 A6 0 4m
2pp=—cos=>2r = >p)= —— . 24
For 6 = mr, we expand the sin to the second power in A6 and find
TN AN S i (25)
— Vs =—.
pP—¢ P = pPo AP

4. Given the in wave packet ¥;,(p), the out wave function ‘¥, (p) is evaluated in the
first Born approximation as

Pou®) = ¥uD) + 5 f PP SE, - Ey)f(p— ) Eu(®)
7 (26)
~ )+ 2 [ 40 - PITE)

In this expression, the first term represents the unscattered incident wave, and to
avoid seeing this term one normally restricts the measurements to non-forward di-
rections. Then, the difference between the amplitudes f; and f, contains the rapidly
oscillating term

0
COS gp = COS (2pp sin 5) , 0+#0, (27)
which, for p exceeding the size of the initial wave packet, integrates out to zero, and

makes no contribution to ¥,,,(p). Thus, the difference between the two methods of
screening the Coulomb potential has no observable effect.



