QUANTUM PHYSICS III

Problem Set 7 29 October 2024

1. Interaction picture

Consider a system with the Hamiltonian $\hat{H} = \hat{H}_0 + \hat{V}$, where \hat{H}_0 is the free Hamiltonian and \hat{V} is the interaction. Define the interaction picture for states and operators via the relations

$$\begin{split} \Psi_{I}(t) &= \hat{U}_{0}^{\dagger}(t) \Psi_{S}(t) \;, \\ \hat{A}_{I}(t) &= \hat{U}_{0}^{\dagger}(t) \hat{A}_{S} \hat{U}_{0}(t) \;, \end{split} \tag{1}$$

where $\hat{U}_0(t) = e^{\frac{i}{\hbar}\hat{H}_0t}$, and the subscript S denotes quantities in the Schrodinger picture.

- 1. Find the relation between the states and operators in the interaction and Heisenberg pictures.
- 2. Show that the evolution of the wave function in the interaction picture is described by the interaction term \hat{V} in the same picture, i.e.

$$-\frac{\hbar}{i}\frac{d}{dt}\Psi_I(t) = \hat{V}_I\Psi_I(t). \tag{2}$$

3. Express the evolution operator in the interaction picture $\hat{U}_I(t)$ through $\hat{U}(t)$ and $\hat{U}_0(t)$. Find a differential equation which $\hat{U}_I(t)$ obeys and determine the initial condition for it.

2. Unitarity versus isometry

Recall that the operator \hat{U} acting in the Hilbert space \mathcal{H} is called unitary if

$$\mathcal{D}(\hat{U}) = \mathcal{H}, \quad \mathcal{R}(\hat{U}) = \mathcal{H}, \quad \hat{U}^{\dagger} \hat{U} = 1, \tag{3}$$

where the last equality should be understood in the operator sense,

$$\langle \Phi | \hat{U}^{\dagger} \hat{U} | \Phi \rangle = \langle \Phi | \Phi \rangle = 1 , \quad \forall \Phi \in \mathcal{H} . \tag{4}$$

1. Prove that the set of conditions (3) is equivalent to the following set,

$$\mathcal{D}(\hat{U}) = \mathcal{H}, \quad \hat{U}^{\dagger} \hat{U} = 1, \quad \hat{U} \hat{U}^{\dagger} = 1. \tag{5}$$

2. Prove that if \mathcal{H} is finite-dimensional, the conditions (5) can be eased to

$$\mathcal{D}(\hat{U}) = \mathcal{H}, \quad \hat{U}^{\dagger} \hat{U} = 1. \tag{6}$$

3. Assuming \mathcal{H} to be infinite-dimensional and with the basis $|1\rangle$, $|2\rangle$, ..., $|n\rangle$,..., construct the sequence of unitary operators $\hat{U}(\lambda)$ such that $\lim_{\lambda\to 0} \hat{U}(\lambda) = \hat{\Omega}$, where $\hat{\Omega}$ is an isometric non-unitary operator.

3. Semiclassical S-matrix in one dimension

Consider a one-dimensional potential barrier located around the point x=0. Assume that at large |x|, the potential falls off fast enough to ensure the plane wave asymptotic solutions of the Schroedinger equation. Let $|\Psi_{in}\rangle$ be the state representing a localized right-moving wave packet at large negative x. We are interested in how this wave packet transforms as it scatters off the barrier. Denote by $|\Psi_{out}\rangle$ the state representing the packet transmitted through the barrier in the region of large positive x. Then, one can define the operator \hat{S} such that

$$\hat{S}|\Psi_{in}\rangle = |\Psi_{out}\rangle . \tag{7}$$

1. With the transmission coefficient of the barrier given by

$$D(q) = 1 - e^{-q^2/q_0^2} , (8)$$

compute the matrix elements of \hat{S} in the space of Gaussian functions,

$$S(p', \sigma'; p, \sigma) \equiv \langle \Psi_{p', \sigma'} | \hat{S} | \Psi_{p, \sigma} \rangle , \quad \Psi_{p, \sigma}(x, t) = C_{p, \sigma} e^{-\frac{\left(x - \frac{p}{m}t\right)^2}{4\sigma^2}} , \tag{9}$$

where $C_{p,\sigma}$ is the appropriate normalization constant (see Problem 2 of Problem set 1).