
QUANTUM PHYSICS III
Problem Set 6 15 October 2024

1. Restoration of symmetry in the double-well potential

Consider the symmetric double-well potential of the form

V(x) = V0(x − x0)2(x + x0)2 , V0 > 0 . (1)

We are interested in the time evolution of the wave function Φ(x, t) of a particle of mass
m, whose energy is well below the barrier separated the wells. Specifically, let the particle
be initially localized, say, in the left well,

Φ(x, 0) = ψ0(x) , (2)

where ψ0(x) denotes the bound state of the left well, and we assume the energy of this
state to be much smaller than the height of the barrier. The wave packet (2) breaks the
parity symmetry of the system. Recall, however, that due to the tunneling phenomenon,
the probability to detect the particle in the right well is nonzero at all t > 0, and if we wait
sufficiently long, we should be able to find the particle in either well with almost equal
average probabilities. So, the symmetry gets restored in the limit t → ∞, and this exercise
is suggested to demonstrate this explicitly.

1. Write the probability P(x, t) to find the particle at the position x and at the time t.

2. Find the explicit expression for the probability P(t) to find the particle in the right
well (that is, at x > 0).

3. Compute the average probability to find the particle in the right well in the limit of
large detection time T :

lim
T→∞

1
T

∫ T

0
P(t)dt . (3)

2. WKB spectrum of the Hydrogen atom

Electron levels in the Hydrogen atom are characterized by three quantum number : nr

(the radial number), l (the angular momentum number), and m (the magnetic number).
To find the energies of the levels, we consider the Coulomb potential supplemented by a
centrifugal term of the form

V(r) = −
1

a0Mr
+

(l + 1/2)2

2Mr2 , (4)

where a0 is the Bohr radius, M is the electron mass, and we put ℏ = 1.
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1. Using the WKB approach, find the energy spectrum of an electron in the potential
(4). Compare with the exact answer.

Hint :
∫ x2

x1
dx

√(
1 − x1

x

) (
x2
x − 1

)
= π

2 (x1 + x2 − 2
√

x1x2).

2. Compute the energy of the ground state, in eV .

3. What is the degeneracy of the n’th energy level ?

3. Classical scattering on a Coulomb potential

Consider a constant flux of non-interacting particles (i.e. a constant number of n particles
per area and time) of mass m with fixed energy and direction approaching a central po-
tential U(r) (a scattering center).

1. Show that the orbit equation for each individual particle is given by (see figure 1)

ϕ(r) =
∫ r

∞

L/r′2dr′√
2m(E − U(r′)) − L2/r′2

, (5)

with E the energy and L the angular momentum. For the Coulomb potential U(r) =
α/r with α ∈ Reals and for E > 0 this is a scattering orbit (a hyperbola).

2. Use the previous equation to determine the deflection angle θ for a particle starting
at r = ∞ and going back to r = ∞.

Hint : Use the formula∫
dx

x
√

ax2 + bx + c
=

1
√
−c

arcsin
bx + 2c

x
√

b2 − 4ac
. (6)

3. Replace the constants of motion (E, L) by (E, b), with b the impact parameter, i.e.
the normal distance between the asymptote of the incident particle and the scattering
center at r = 0.

O

θ

b

ϕ0

Fig. 1 – The Coulomb potential

4. Determine the number of particles dN per area and per time in a ring between b and
b+ db. If there is a one-to-one functional relation b(θ) between b and the scattering
angle, then dN is at the same time the number of particles that is scattered in an
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angle between θ and θ + dθ. Use this to show that the differential cross section for a
Coulomb scattering (i.e. the Rutherford scattering formula) is given by

dσ
dΩ
=

α2

16E2

1
sin4 θ

2

. (7)

5. Show that the total cross section is infinite. Interpret the result.

4. Differential cross section transformation

Consider a particle of mass m1 scattering off a target particle of mass m2 in the non-
relativistic limit.

1. Show that the relation between the differential cross section in the laboratory frame
at a given lab angle θLAB and the differential cross section in the center of mass
frame at the corresponding angle θCM can be written as(

dσ
dΩ

)
LAB
=

(
1 + 2λ cos θCM + λ

2
)3/2

|1 + λ cos θCM |

(
dσ
dΩ

)
CM

(8)

with λ = m1/m2 the mass ratio of the two particles.

Hint : Show that the relation between cos θLAB and cos θCM is given by

cos θLAB =
cos θCM + λ

(1 + 2λ cos θCM + λ2)1/2 . (9)

5. Interaction picture

Consider a system with the Hamiltonian Ĥ = Ĥ0 + V̂ , where Ĥ0 is the free Hamiltonian
and V̂ is the interaction. Define the interaction picture for states and operators via the
relations

ΨI(t) = Û†0(t)ΨS (t) ,

ÂI(t) = Û†0(t)ÂS Û0(t) ,
(10)

where Û0(t) = e
i
ℏ Ĥ0t, and the subscript S denotes quantities in the Schrodinger picture.

1. Find the relation between the states and operators in the interaction and Heisenberg
pictures.

2. Show that the evolution of the wave function in the interaction picture is described
by the interaction term V̂ in the same picture, i.e.

−
ℏ

i
d
dt
ΨI(t) = V̂IΨI(t) . (11)

3. Express the evolution operator in the interaction picture ÛI(t) through Û(t) and
Û0(t). Find a differential equation which ÛI(t) obeys and determine the initial condi-
tion for it.
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