QUANTUM PHYSICS III

Problem Set 3 24 September 2024

1. On validity of the leading-order (LO) WKB approximation

Consider the semiclassical expansion of the wave function

$$\psi = e^{\frac{i}{\hbar}S}$$
, $S = S_0 + \frac{\hbar}{i}S_1 + \left(\frac{\hbar}{i}\right)^2 S_2 + \dots$ (1)

It is shown in the lecture notes that one necessary applicability condition of the LO semiclassical approximation

$$\psi \approx e^{\frac{i}{\hbar}(S_0 + \frac{\hbar}{i}S_1)} \tag{2}$$

is formulated as $|\mathcal{X}'| \ll 1$, where $\mathcal{X} = \hbar/p$ is the de Broglie wave length. However, this requirement is by no means *sufficient* to ensure the validness of the LO approximation, and in this exercise we have a look at other necessary conditions.

- 1. Expanding the Schrödinger equation for ψ up to the second order in \hbar , find S_2 in terms of S_0 and S_1 . Rewrite it through the momentum p and its derivatives; through the energy of the particle E, the potential V and its derivatives.
- 2. Show that for the approximation (2) to hold, one must require $|\hbar^{n-1}S_n| \ll 1$ for all $n \ge 2$.
- 3. Show that the first condition in this chain, $|\hbar S_2| \ll 1$, follows from $|\lambda'| \ll 1$ and $\int_0^x |\lambda'^2 \lambda^{-1}| dx \ll 1$.
- 4. From the condition $|\lambda'| \ll 1$ obtain the following inequality,

$$\left|\frac{\delta A}{T_{kin}}\right| \ll 1 \;, \tag{3}$$

where δA is a work done by a force F = -V' on a distance λ , and T_{kin} is a kinetic energy of the particle.

2. On accuracy of the LO WKB approximation

Consider the particle of unit mass and with the energy V_0 , moving in the potential

$$V(x) = \begin{cases} 0, & x < 0, \\ V_0 \sqrt{\frac{x}{x_0}}, & x > 0. \end{cases}$$
 (4)

- 1. Find the LO WKB wave function of the particle in the region $x > x_0$.
- 2. Find how small (or large) one should take V_0 to be sure that the LO approximation of the wave function is accurate to 1 percent for all $x > 2x_0$.

3. On asymptotics of the potential in the WKB approximation

Consider the particle of zero energy, moving in the potential V(x) shown schematically on figure 1. Assume that V(x) approaches a constant negative value at $x \to -\infty$, and that its behavior at large positive x is of the form

$$V(x) \sim x^{-n}, \quad n > 0, \quad x \to \infty.$$
 (5)

1. Give a constraint on possible values of n, that ensures the validness of the LO WKB approximation of the decaying wave function in the limit $x \to \infty$.

Suppose now that the asymptotics of the potential at large positive x is

$$V(x) \sim \left(\frac{\log x}{x}\right)^2 \ . \tag{6}$$

2. Is it legitimate to use WKB theory to predict the large-*x* behavior of the decaying wave function?

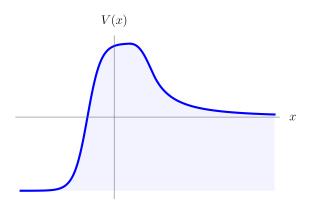


Figure 1 – The potential

4*. WKB expansion beyond the LO

The semiclassical approximation of the amplitude (2) can be continued beyond the LO by successive calculation of higher-order terms in the expansion (1). These terms exhibit some interesting properties which, as we will see later, are important when computing the energy levels of the particle.

- 1. Obtain an iterative expression for S'_n through $S'_0, ..., S'_{n-1}$.
- 2. Show that all *odd* terms S'_{2k+1} are
 - (a) real (and, hence, do not contribute to the phase of the wave function),
 - (b) total derivatives.