QUANTUM PHYSICS III

Problem Set 12 3 December 2024

1. General solution of the Dirac equation

Due to linearity, the Dirac equation

$$-\frac{\hbar}{i}\frac{\partial \Psi_D}{\partial t} = H_D \Psi_D \tag{1}$$

admits a decomposition of its general solution to the plane-wave functions,

$$\Psi_D = e^{\frac{i}{\hbar}(\mathbf{p}\cdot\mathbf{x} - \omega_P t)} u_P , \qquad (2)$$

where u_P is some function of the momentum **p**.

- 1. Rewrite eq. (1) as an equation on u_P .
- 2. Find the necessary and sufficient condition for this equation to have a non-zero solution. What is the physical meaning of this condition?
- 3. Find the general solution of the equation above. Hint: At this point it is convenient to remember that u_P is a column $(\phi_P, \chi_P)^T$ of two-component functions ϕ_P and χ_P .
- 4. Rewrite the general solution in the non-relativistic limit $p \ll m$.

2. Properties of the Dirac matrices

Recall that the Dirac Hamiltonian H_D is given by the following 4×4 matrix,

$$H_D = \sum_{i=1}^{3} \alpha_i p_i + \beta m , \qquad (3)$$

where

$$\alpha_i = \begin{pmatrix} 0 & \sigma_i \\ \sigma_i & 0 \end{pmatrix}, \quad \beta = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}. \tag{4}$$

Here σ_i are the Pauli matrices, and I denotes the 2×2 identity matrix. The matrices α_i and β obey certain relations which, however, do not specify them fully, hence the choice (4) is not unique.

1. Given α_i , β , one can define new matrices α'_i , β' via

$$\alpha_i' = U\alpha_i U^{-1}, \quad \beta' = U\beta U^{-1}, \tag{5}$$

where U is a unitary but otherwise arbitrary 4×4 matrix. Show that α'_i, β' form an appropriate set of matrices provided that α_i, β do.

- 2. Find the matrix U that transforms β , given in eq. (4), into $\beta' = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$. Find α'_i corresponding to this transformation. This choice of the Dirac matrices is called the Weyl representation.
- 3. Write the Dirac equation in the Weyl representation and in the notation $\Psi_D = (\phi, \chi)^T$. Take the limit m = 0, and check if the components ϕ and χ satisfy the Klein-Gordon equation. Find the solution of this equation for the massless particle propagating along the x-direction.
- 4. Find the representation of the Dirac matrices α' , β' such that Im $\alpha'_i = \text{Re } \beta' = 0$.

3. One useful relation

1. Show that

$$(\vec{\sigma} \cdot \vec{\pi})(\vec{\sigma} \cdot \vec{\pi}) = \vec{\pi}^2 - \frac{e\hbar}{c} \vec{\sigma} \cdot \vec{B}, \tag{6}$$

where $\vec{\pi} = \vec{p} - \frac{e}{c}\vec{A}$, $\vec{B} = \text{rot } \vec{A}$, and $\vec{\sigma}$ denotes the triplet of the Pauli matrices.

4. On Landau levels

In this exercise we are interested in energy levels of an electron in a uniform magnetic field. To find them, one should proceed in the same way as in the non-relativistic case. Namely, we take an *Ansatz* for stationary states,

$$\Psi = e^{-\frac{i}{\hbar}Et} \begin{pmatrix} \phi \\ \chi \end{pmatrix} , \tag{7}$$

and plug it into the Dirac equation in the external field,

$$-\frac{\hbar}{i}\frac{\partial\Psi}{\partial t} = \left(c\vec{\alpha}\cdot\left(-i\hbar\vec{\nabla} - \frac{e}{c}\vec{A}\right) + \beta mc^2 + e\Phi\right)\Psi. \tag{8}$$

This gives an eigenvalue problem for E whose solution will provide us with the desired energy levels.

Specifically, let us align the magnetic field along z-direction,

$$\vec{B} = \begin{pmatrix} 0 \\ 0 \\ \mathcal{B} \end{pmatrix} . \tag{9}$$

We will work in the Dirac representation of the matrices α_i , β studied in Lectures. For simplicity, we also put $\hbar = c = 1$.

1. Show that the magnetic field (9) is reproduced by the following combination of the potentials,

$$\vec{A} = - \begin{pmatrix} y\mathcal{B} \\ 0 \\ 0 \end{pmatrix}, \quad \Phi = 0. \tag{10}$$

Is this choice of \vec{A} and Φ unique?

- 2. Substituting the Ansatz (7) and the potentials (10) into eq. (8), obtain an equation on the component ϕ .
- 3. Next, assume the following form of the general solution of the equation above,

$$\phi = e^{i(p_x x + p_z z)} \left(c_1 \begin{pmatrix} F_+(y) \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ F_-(y) \end{pmatrix} \right), \tag{11}$$

with c_1 , c_2 , p_x , p_z arbitrary constants. Find equations on the functions $F_+(y)$ and $F_-(y)$. By changing variables, reduce them to the form

$$\left(\frac{d^2}{d\xi^2} - \xi^2 + \alpha_{\pm}\right) F_{\pm}(\xi) = 0.$$
 (12)

4. Eq. (12) is of Hermite's type. It admits solutions provided that $\alpha_{\pm} = 2n + 1$, n = 0, 1, 2, ... Having this in mind, derive the formula for the electron energy levels. What is the degeneracy of the ground level n = 0? Of the first excited level n = 1?