QUANTUM PHYSICS III

Problem Set 11 26 November 2024

1. Properties of spherical Bessel functions

Recall the definitions of the spherical Bessel and von Neumann functions (for / € N) :
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1. Compute the asymptotic behavior of j, and y, forp — 0 :
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7 11” is the double factorial, defined asn!! =n-(n—2)-(n—4) - ..., with the usual
convention 0O!! = 1.
2. Compute the asymptotic behavior of j, and y; for p — oo :
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2. Scattering phase shift in a Yukawa potential
For a Yukawa potential,
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it can be shown that in the first Born approximation, the scattering amplitude is given by
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6 is the angle between p and p’, and p = |p| = |p’|; (we also consider 7 = 1 as usual).

1. Obtain an expression for the scattering phase shift §; in terms of Legendre functions

of the second kind : |
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We will assume that |6;| < 1.
Hint. Make use of the orthogonality of the Legendre polynomials :
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2. Use the expansion formula :
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to show the following :

(a) 0 1s negative, resp. positive, when the potential is repulsive, resp. attractive.

(b) When the de Broglie wavelength is much longer than the range of the poten-
tial, ¢, is proportional to p**!. Find the proportionality constant.

3. Scattering off a spherical potential

Consider the potential V(r) given by

V) 0 forr >R, (12)
r) =
oo forr <R.

1. Derive an expression for the s-wave (I = 0) phase shift. By obtaining a general
expression for the scattering phase shift ¢; in the limit kR < 1, justify contributions
beyond s-wave can be neglected.

2. What is the total cross section o = f (j—g)dQ in the extreme low-energy limit k —
0? Compare your answer with the geometric cross section wa?. Use the following

relations :
do 5
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4. Scattering off a constant potential

Consider a potential

0 forr > R,
V= (15)
Vo = constant for r < R,

where V, may be positive or negative.



1. Using the method of partial waves, show that for |Vy| < E = % and kR < 1, the
scattering phase shift can be written as :
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where E - V, = €
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Furthermore, show that the differential cross section is isotropic and that the total

cross section is given by
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Hint : the following identity may be useful :
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for f any spherical Bessel or von Neumann function.

2. Suppose the energy is raised slightly. Show that the angular distribution can then be

written as i
d—g:A+Bcose. (19)

Obtain an approximate expression for B/A.

5. Scattering off a - potential

Let (A > 0) and consider the potential
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1. Write down the eigenvalue equation of the Hamiltonian associated with this poten-
tial, and find a solution in terms of spherical Bessel functions.

Hint : Even though the spherical Bessel functions j;(x) were defined for an integer
[, they can also be extended to any complex /.

2. Obtain the phase shifts exactly. Show that for A < 1, one approximately has
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What is the value of the total cross section ?



