
QUANTUM PHYSICS III
Problem Set 10 19 November 2024

1. Applicability condition of the first Born approximation

On physical grounds, one can expect the accuracy of the Born approximation to increase
when the energy of the scattered particles becomes higher or when the interaction term in
the Hamiltonian Ĥ = Ĥ0+V̂ becomes weaker. To make this reasoning quantitative, we say
that the (first) Born approximation works well if the difference between the asymptotic
wave function Ψin(x) = ⟨x|Ψin⟩ and the wave function Ψ0(x) = ⟨x|Ψ0⟩ = ⟨x|Ω̂+|Ψin⟩ is
small, in particular

|Ψin(0) − Ψ0(0)| ≪ |Ψin(0)| . (1)

1. Show that for a spherically symmetric potential V(r) the condition (1) implies

m
p

∣∣∣∣∣∫ ∞

0
dr V(r)(1 − e2ipr)

∣∣∣∣∣ ≪ 1 , (2)

where p is the momentum of the particle and m is its mass.

2. As a model example, consider the square well potential,

V(r) =
{
− V0 , r < R ,
0 , r > R .

(3)

Substitute this potential into eq. (2) and obtain the algebraic inequality the quantities
m, V0 and R must satisfy in the limit of slow scattering, pR ≪ 1.

3. Show that this inequality can be rewritten as

σ ≪ 4πR2 . (4)

4. Work out the applicability condition for the potential (3) in the regime of fast scat-
tering, pR ≫ 1. Is it stronger or weaker than in the slow scattering limit?

5. Use eq. (2) to derive the applicability conditions for the Yukawa potential,

V(r) =
α

r
e−µr , (5)

in the cases of slow (p ≪ µ) and fast (p ≫ µ) particles.
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2. Towards the inverse scattering problem

Elastic scattering from some central potential V(r) can be adequately calculated using the
first Born approximation. Experimental results give the following qualitative behaviour of
the scattering amplitude as a function of the momentum transfer q (see figure 1),

(i) For q ≲ q0, | f (q)| ≈ f0,
| f ′(q)|

q
≈ C;

(ii) For q ≳ q0, | f (q)| ∼ q−N/2, N > 3.

q0
q

f0

|f |

Fig. 1: The measured behaviour of the scattering amplitude.

1. What is the approximate size of the interaction region of the potential V(r)?
Hint: Expand the expression for the scattering amplitude at small q by the powers
of qr.

2. What is the behaviour of the potential at very small distances?

3. Truncation of the Coulomb potential

The scattering theory studied in this course is not directly applicable to many important
physical situations, in particular, to the Coulomb scattering for which

V(r) =
α

r
. (6)

It is easy to see that a straightforward attempt to compute the Born amplitude with the po-
tential (6) results in the divergence. A possible way to produce meaningful results within
the conventional scattering theory is to truncate the expression (6), i.e., to change its
behaviour at large distances so that the scattering amplitude becomes well-defined. The
answer obtained in this way makes sense as long as any measurement of physical observ-
ables with finite accuracy does not depend on a parameter of truncation and on a specific
truncation procedure. If this is the case, the result is expected to be consistent with the
one computed within the rigorous approach.
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In this exercise, we consider two ways to improve the asymptotics of the Coulomb poten-
tial (6) at infinity: the exponential shielding

Vρ(r) =
α

r
e−r/ρ , (7)

and a sharp cutoff

Vρ(r) =


α

r
, r ⩽ ρ ,

0 , r > ρ .
(8)

Here ρ is the truncation parameter which is assumed to be finite but arbitrarily large.

1. In the first Born approximation, compute the scattering amplitude f1(p → p′) for
the potential (7). For which scattering angles does it have a well-defined limit at
ρ→ ∞?

2. Compute, also in the first Born approximation, the amplitude f2(p → p′) for the
potential (8). Does it have a limit at ρ→ ∞?

3. Show that by taking ρ sufficiently large, the ratio of the two answers | f2/ f1| can be
made arbitrarily close to 1 in any experiment measuring the scattering angle θ with
the finite accuracy ∆θ. In other words, prove that

1
∆θ

∫ θ+∆θ

θ

dθ′
∣∣∣∣∣ f2(θ′)
f1(θ′)

∣∣∣∣∣ = 1 , θ , 0 , ρ ≫ ρ0 . (9)

Find ρ0 as a function of the initial momentum of the particle, the measured scatter-
ing angle θ and the systematic error ∆θ.

4. As another way to convince oneself in the legitimacy of the truncation procedure,
consider the out wave packet produced by the potential (7) or (8),

Ψout(p) = Ψin(p) +
i

2πm

∫
d3p′ δ(Ep − Ep′) f1,2(p→ p′)Ψin(p′) . (10)

Show that in the limit qρ ≫ 1 the difference between f1 and f2 makes no contribu-
tion to Ψout(p).
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