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Series 1, Exercise 2

To produce a plasma, a cylindrical vacuum tube (length l = 2m, radius a = 1m)

is pumped down to a base pressure p < 10
�8

torr (760torr is the atmospheric

pressure), and then filled with Argon (ionization energy 15.8 eV) at p = 10
�3

torr

that you can assume to be at room temperature. A mono-energetic electron

beam (radius r = 10cm, total current I = 1A and energy Ue = 30eV) is injected

along the axis of the tube using an electron gun.

a.) Evaluate the total number of ions per second produced in the tube by the

impact of the electrons on the neutrals.

b.) Assuming no recombination and no fueling of gas, how long could we

maintain this discharge?

Suppose to have an ionization cross-section for electrons at 30eV of �ion ⇠ 10
�20

m
2
.

Recall:

1 Torr = 133 Pa
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Series 1, Exercise 3

Semi-conductor manufacturers use plasma during surface treatment of materi-

als. In a vacuum chamber of 0.5m ⇥ 0.5m ⇥ 0.5m dimensions, an inert gas is

partially ionized by radio waves.

Consider the case where the gas used is Argon that you can assume to be at

room temperature (p = 10
�4

torr , ne = 10
16
m

�3
, Te = 3eV, and Ti = 0.1eV -

first ionization):

a.) Calculate the relative ionization degree of the gas used.

b.) Estimate the collision frequency (electron-neutral ⌫en) assuming a cross

section of � = 1000⇡a
2
0, where a0 = 5.29⇥ 10

�11
m is the Bohr radius.

c.) Can we consider this gas as a plasma? Why?

Recall:

1 Torr = 133 Pa
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Series2, Exercise 1

A partially ionized slab of plasma has the following density distribution:

n(x) = n0cos

⇣
⇡x

2L

⌘
, �L  x  L

Di↵usion and recombination processes are present and a source term ensures

@n/@t = 0. The recombination gives a reduction term equal to �↵n
2
in the

continuity equation. Consider a constant di↵usion term D = 0.1m
2
/s, ↵ =

10
�15

m
3
/s and L = 2m.

a.) Find an equation expressing the global balance of the total number of

plasma particles, taking into account the global losses due to di↵usion

and the ones due to recombination. Use this equation to find the rate

at which particles must be injected by the source to maintain the given

density distribution, that is express
R L
�L S(x)dx as a function of D, ↵, L

and n0.

b.) Find the value of the peak density (n0) that would correspond to having

the rate of losses at the wall equal to the recombination rate.

c.) Estimate the plasma particle mean life-time for that value of density.
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Series 2, Exercise 2

Consider a weakly ionized hydrogen plasma in a long cylindrical vacuum tube

(length L, radius rc, and L >> rc ) with Te = Ti. Two plates of radius rs < rc

are located at the two ends of the cylinder and biased to generate an RF field,

which acts as a source of plasma. The plasma source can be assumed equal to a

constant S0 in the inner column of radius rs and zero elsewhere. Measurements

show that the plasma density drops to zero at the cylinder vessel, while the

neutral density is constant. Since L >> rc one can neglect the axial losses at the

end of the cylinder, and the plasma can be considered axially uniform. Moreover,

recombination and turbulent phenomena can be neglected with respect to the

dominant di↵usion process.

a.) Write the di↵usion coe�cient describing the main transport process in

such plasma.

b.) Find the steady state profile of the plasma density as a function of the

radius, n(r).

c.) Estimate the relative ionization degree (i.e. n(r = 0)/nn) of the plasma

at the center of the column.

Consider Te = Ti = 1 eV, �i/n ⇡ 10
�18

m
2
, S0 = 10

19
m

�3
s
�1

, rs = 0.5 m,

rc = 1 m, L = 10 m.
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Series 3, Exercise 2

Consider the total momentum lost by a population of electrons colliding with

a population of ions, in the three-dimensional space. Demonstrate that for a

Maxwellian distribution of electrons with a drift velocity vd (vd << vthe) in the

x direction, the average of the collision frequency is given by:

⌫̄
e/i
p =

1

3

r
2

⇡
⌫
e/i
p (vthe) ' 0.26 · ⌫e/ip (vthe)

where ⌫
e/i
p (vthe) is the collision frequency for the momentum transfer be-

tween electrons and ions at the electron velocity vthe.

Indications:

consider the physical meaning of the e↵ective collision frequency to deter-

mine which is the physical quantity that has to be averaged.

suppose ln⇤ = const, independent of the velocity and equal for electrons

and ions.

Recall:

⌫
e/i
p (ve) = ni

Z
2
e
4

4⇡✏
2
0

ln⇤

m2
ev

3
e
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Series 3, Exercise 3

Consider the relaxation process of alpha particles (↵’s) at 3.5MeV created by

fusion reactions in a deuterium-tritium plasma (50 : 50D-T). Evaluate the time-

scale for the energy loss of ↵’s in a plasma with ne = 10
20

m
�3

. Consider the

collisions between three plasma species, assuming Te = TD = TT = 10 keV.

a.) Which species is the most important in the ↵’s thermalisation process?

b.) Which species is heated more by ↵’s particles?

Suggestion: start with a thermal energy for the ↵’s of 3.5MeV and then consider

the di↵erent regimes corresponding to the di↵erent energies of the ↵’s during

the thermalisation.

Recall:

⌫
j/k
Ek

⇠ nk

Z
2
jZ

2
ke

4

2⇡✏
2
0

ln⇤k

mjmkv
3
j
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Series 4, Exercise 2

Consider the electrons in the ”tail” of the distribution function (v >> vthe).

Show that the collision frequency for these electrons is:

⌫ = ⌫
e/e0

p + ⌫
e/i
p = (2 + Z)

nee
4

4⇡✏
2
0

ln⇤

m2
ev

3

Demonstrate that these energetic electrons can be continuously accelerated

(run-away regime) if their energy is higher than a critical value corresponding

to a critical electric field, the Dreicer electric field, ED:

1

2
mev

2
> Te

ED

E

Find an expression for ED and estimate the critical kinetic energy needed for

an electron to enter the run-away regime for the electric field found in Exercise

1 using the same parameters.
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Series 4, Exercise 3

Consider a fully ionized hydrogen plasma in a tokamak (major radius R, minor

radius a) with a toroidal magnetic field B which is considered to be constant in

the plasma (reasonable if a ⌧ R). The particle and heat sources are provided

by injection of both neutral beam and electromagnetic waves. The steady state

density profile in the radial direction is experimentally measured and is shown

in the figure below:

-0.6 -0.5 0.5 0.6

1
n [1020 m-3]

r [ m]

Consider B = 2T, Te = Ti = 10 keV, n(r = 0) = 10
20

m
�3

, R = 2m,

a = 0.6m.

a.) Since a source is needed to maintain such steady state, it is obvious that

the plasma is flowing out radially despite the magnetic confinement. What

process could explain particle transport across the magnetic field? Is it

possible to assert that the measured density profile is compatible with a

di↵usive particle transport?

b.) The measured particle flux between r = 0.5m and r = 0.6m is �n =

8 ⇥ 10
20

m
�2

s
�1

. Calculate the e↵ective di↵usion coe�cient De↵ at this

location, and compare it with the classical di↵usion coe�cient D? that

you would get considering the main collisional process.

c.) What can you conclude concerning the particle transport mechanism in

this plasma?
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Series 5, Exercise 1

a.) Consider the magnetic flux through a given surface moving with the

plasma,

�B(t) ⌘
Z Z

S(t)
B(t) · dS

Starting from the ideal MHD equations, show that the magnetic flux is

frozen in the plasma,

d�B

dt
= 0

What does this imply on the magnetic topology in such a plasma?

b.) Consider now that the plasma has some finite resistivity. How does this

a↵ect the magnetic flux?

c.) Find the di↵usion equation for the magnetic field in a resistive plasma.

Estimate the di↵usion time of the magnetic field in ITER (characteristic

length L = 3m, electron temperature Te = 10 keV).

Recall, the relevant ideal MHD equations are:

r ·B = 0

r⇥E = �@B

@t

E+ u⇥B = 0
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Series 5, Exercise 2

a.) Demonstrate that the propagation of a transverse wave along the z axis

(k = kez) in a string with tension S and mass per unit length M is given

by:

@
2
y

@z2
=

M

S

@
2
y

@t2

b.) Considering the ideal MHD model, demonstrate that the Alfvén waves (or

shear waves), propagating along the magnetic field (k k B0, B0 = B0ez),
can be described with the same equation of a transverse wave in a string.

Identify the terms M and S in the equation in a.) for the Alfvén waves.

c.) The tokamak ITER will operate with a plasma D - T at 13 keV with a

uniform electron density ne = 10
20

m
�3

and a magnetic field B = 6T.

Evaluate the phase velocity of the Alfvén waves for that plasma.

d.) Fusion reactionsD
+
+T

+ ! He
++
(3.5MeV)+n(14MeV) occur when a plasma is

heated with ion beams D
+
with energy of 1MeV. Which charged particles

are resonant with the Alfvén waves (same velocity with wave)?

Remark: skip part a)

Recall, the linearised ideal MHD equations are:

@⇢1

@t
+ ⇢0r · u1 = 0

⇢0
@u1

@t
= �rp1 +

1

µ0
(r⇥B1)⇥B0

@B1

@t
= r⇥ (u1 ⇥B0)

p1 = c
2
s⇢1
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Series 6, Exercise 1

In the lecture we have neglected the e↵ect of collisions in the two-fluid model

used to derive the dispersion relation of a wave in a magnetized plasma.

Consider a cold unmagnetized fluid plasma (T = 0,B0 = 0).

a.) Derive the dispersion relation of waves in such plasma keeping the collision

term in the momentum equation for the electrons.

b.) Show that in this case longitudinal waves (Langmuir waves) are damped.

Recall, the wave equation for E is:


N

2

✓
kk

k2
� 1

◆
+ ✏

�
·E = 0

✏ = 1

✓
1 +

i

✏0!
�

◆
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Series 6, Exercise 2

An antenna can detect frequencies around f = 80MHz and is used to measure

the wave coming from a pulsar producing a broad electromagnetic spectrum.

Due to the dispersion of the group velocity caused by the interstellar plasma,

the measured frequency during a pulse drift varies according to df/dt = �5MHz · s�1
.

a.) Considering !
2 � !

2
p and neglecting the magnetic field in the interstellar

plasma, demonstrate that:

df

dt
⇡ � c

x

f
3

f2
p

where fp = !p/2⇡ and x is the distance of the pulsar.

b.) Find the distance of the pulsar in parsec (1 parsec = 3 ⇥ 10
16

m) consid-

ering a mean electron density in space of 2⇥ 10
6
m

�3
.
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Series 7, Exercise 1

∆z

! vide " plasma # vide

E
! 

= E
!
(z,t)ê

x E
"

= E
L
+E

R
E

#
= ?

z = ∆zz = 0

y

B
0

z

x

Consider the situation displayed above. An electromagnetic wave propagat-

ing along the magnetic field B0 crosses a portion of plasma. In the plasma,

consider the dispersion relation of an electromagnetic wave in a cold uniform

plasma :

N
2
=

k
2
c
2

!2
=

(! ⌥ !R)(! ± !L)

(! ± ⌦i)(! ⌥ |⌦e|)
⇡ 1�

!
2
pe/!

2

1⌥ |⌦e|/!
; (! � ⌦i)

The upper sign is related to the right-handed wave (R) and the lower sign

to the left-handed wave (L).

a.) Show that the rotation (polarization) angle ↵, when the wave exits the

plasma, is equal to half of the phase di↵erence between the two waves.

Find a relation for ↵ as a function of the distance travelled, !, ⌦e and

!pe. Consider the limit:

!
2
pe/!

2

1⌥ |⌦e|/!
⌧ 1

b.) The Faraday rotation of a micro-wave beam (� = 8mm) in a uniform

plasma with a magnetic field B0 = 0.1T is measured. When the beam

propagates through 1m of plasma, the polarization direction turns of 90
�
.

Find the plasma density.
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Series 8, Exercise 2

Show that in a plasma described by the Vlasov equation:

@f

@t
+ ~v

@f

@~x
+

q

m
( ~E + ~v ⇥ ~B) · @f

@~v
= 0

the entropy, defined in a simple way (without numerical factors) as:

S(t) = �
Z

d~v

Z
d~xf(~x,~v, t) ln (f(~x,~v, t))

is conserved (dS/dt = 0).
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Series 9, Exercise 2

Using the general dispersion relation from the Vlasov-Maxwell model:

D(!, k) = 1 +

X

↵

e
2

m↵✏0k

Z +1

�1
du

dF0↵

du

1

! � ku
= 0

evaluate the dispersion relation of the ion-acoustic waves in the limit kvthi ⌧
! ⌧ kvthe, Te � Ti, and assuming � ⇠ 1/k � �D. Consider F0e and F0i as

Maxwellian distribution functions.

Notice that in the case of waves with low frequency (e.g. the ion-acoustic
waves), both species have to be considered (electrons and ions).
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Series 11, Exercise 2

Evaluate the Landau damping for an ion-acoustic wave solution of the

dispersion relation of the Vlasov-Poisson model,

D(!, k) = ✏(!, k) = 1�
X

↵

e
2

m↵✏0k
2

Z

L
du

dF↵0

du

1

u� !
k

= 0.

where the integral should now be evaluated using Landau’s rule. Suppose to

have a maxwellian equilibrium distribution. Assuming that kvthi ⌧ ! ⌧ kvthe,

Te � Ti and � � �D, show that the total damping rate of the wave is �t =

�e + �i, where �e and �i are respectively the electron and ion contributions,

�e ⇡ �
r

⇡

8
kcs

r
me

mi

�i ⇡ �
r

⇡

8
kcs

✓
Te

Ti

◆3/2

exp

✓
� Te

2Ti

◆
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Series 12, Exercise 1

Consider a quasi-neutral electron-proton plasma in which an equilibrium current

is flowing. This may be described by a Maxwellian ion distribution at rest and

a drifting Maxwellian for the electrons

Fi(u) =
np

2⇡vth,i

exp

"
� u

2

2v
2
th,i

#
Fe(u) =

np
2⇡vth,e

exp

"
� (u� vd)

2

2v
2
th,e

#

where vth,i, cs ⌧ vd ⌧ vth,e.

a.) Make a plot of the distribution functions of ions and electrons on the same

scale, look in the region, vth,i < !r/k ⌧ vth,e, and show where you expect

unstable waves might occur.

b.) Consider an ion-acoustic wave: write an expression for the damping/growth

rate, �, including both electron and ion contributions. Show that the elec-

tron contribution introduces a destabilizing term in the expression of �.

c.) Demonstrate that the condition Te � Ti is generally required for insta-

bility and justify the result. Show that � ⇠
p

⇡
8 kvd(me/mi)

1/2
when

Te � Ti.

Recall:

D(!, k) = ✏(!, k) = 1�
X

↵

e
2

m↵✏0k
2

Z

L
du

dF↵0

du

1

u� !
k

= 0.
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Series 12, Exercise 2

Consider a uniform plasma with a fixed population of ions and two di↵erent

electron populations:

a Maxwellian population with density np, temperature Tp and no drift

velocity

a Maxwellian beam with density nb, temperature Tb and drift velocity

v = V ex

When the magnitude of the beam density nb exceeds a certain threshold the

two-stream instability can develop. As seen in the lecture, the Landau damping

coe�cient � is proportional to the imaginary part of the dielectric function

✏i(!r). Its sign determines wether a given mode can become unstable or not.

Supposing that the phase velocity of the instability, v�, corresponds to a velocity

v for which the slope of fb(v) is maximum and supposing that V � vth,b, show

that the critical density ratio above which there can be an instability is:

nb

np
=

p
e
Tb

Tp

V

vth,p
exp

 
� V

2

2v
2
th,p

!
.
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