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Series 1, Exercise 2

To produce a plasma, a cylindrical vacuum tube (length l = 2m, radius a = 1m)
is pumped down to a base pressure p < 10−8torr (760torr is the atmospheric
pressure), and then filled with Argon (ionization energy 15.8 eV) at p = 10−3torr
that you can assume to be at room temperature. A mono-energetic electron
beam (radius r = 10cm, total current I = 1A and energy Ue = 30eV) is injected
along the axis of the tube using an electron gun.

a.) Evaluate the total number of ions per second produced in the tube by the
impact of the electrons on the neutrals.

b.) Assuming no recombination and no fueling of gas, how long could we
maintain this discharge?

Suppose to have an ionization cross-section for electrons at 30eV of σion ∼ 10−20m2.

Recall:
1 Torr = 133 Pa
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Series 1, Exercise 3

Semi-conductor manufacturers use plasma during surface treatment of materi-
als. In a vacuum chamber of 0.5m × 0.5m × 0.5m dimensions, an inert gas is
partially ionized by radio waves.

Consider the case where the gas used is Argon that you can assume to be at
room temperature (p = 10−4torr , ne = 1016m−3, Te = 3eV, and Ti = 0.1eV -
first ionization):

a.) Calculate the relative ionization degree of the gas used.

b.) Estimate the collision frequency (electron-neutral νen) assuming a cross
section of σ = 1000πa2

0, where a0 = 5.29× 10−11m is the Bohr radius.

c.) Can we consider this gas as a plasma? Why?

Recall:
1 Torr = 133 Pa
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Series2, Exercise 1

A partially ionized slab of plasma has the following density distribution:

n(x) = n0cos
(πx

2L

)
, −L ≤ x ≤ L

Diffusion and recombination processes are present and a source term ensures
∂n/∂t = 0. The recombination gives a reduction term equal to −αn2 in the
continuity equation. Consider a constant diffusion term D = 0.1m2/s, α =
10−15m3/s and L = 2m.

a.) Find an equation expressing the global balance of the total number of
plasma particles, taking into account the global losses due to diffusion
and the ones due to recombination. Use this equation to find the rate
at which particles must be injected by the source to maintain the given

density distribution, that is express
∫ L
−L S(x)dx as a function of D, α, L

and n0.

b.) Find the value of the peak density (n0) that would correspond to having
the rate of losses at the wall equal to the recombination rate.

c.) Estimate the plasma particle mean life-time for that value of density.
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Series 2, Exercise 2

Consider a weakly ionized hydrogen plasma in a long cylindrical vacuum tube
(length L, radius rc, and L >> rc ) with Te = Ti. Two plates of radius rs < rc
are located at the two ends of the cylinder and biased to generate an RF field,
which acts as a source of plasma. The plasma source can be assumed equal to a
constant S0 in the inner column of radius rs and zero elsewhere. Measurements
show that the plasma density drops to zero at the cylinder vessel, while the
neutral density is constant. Since L >> rc one can neglect the axial losses at the
end of the cylinder, and the plasma can be considered axially uniform. Moreover,
recombination and turbulent phenomena can be neglected with respect to the
dominant diffusion process.

a.) Write the diffusion coefficient describing the main transport process in
such plasma.

b.) Find the steady state profile of the plasma density as a function of the
radius, n(r).

c.) Estimate the relative ionization degree (i.e. n(r = 0)/nn) of the plasma
at the center of the column.

Consider Te = Ti = 1 eV, σi/n ≈ 10−18 m2, S0 = 1019 m−3s−1, rs = 0.5 m,
rc = 1 m, L = 10 m.
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Series 3, Exercise 2

Consider the total momentum lost by a population of electrons colliding with
a population of ions, in the three-dimensional space. Demonstrate that for a
Maxwellian distribution of electrons with a drift velocity vd (vd << vthe) in the
x direction, the average of the collision frequency is given by:

ν̄e/ip =
1

3

√
2

π
νe/ip (vthe) ' 0.26 · νe/ip (vthe)

where ν
e/i
p (vthe) is the collision frequency for the momentum transfer be-

tween electrons and ions at the electron velocity vthe.

Indications:

� consider the physical meaning of the effective collision frequency to deter-
mine which is the physical quantity that has to be averaged.

� suppose ln Λ = const, independent of the velocity and equal for electrons
and ions.

Recall:

νe/ip (ve) = ni
Z2e4

4πε20

lnΛ

m2
ev

3
e
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Series 3, Exercise 3

Consider the relaxation process of alpha particles (α’s) at 3.5 MeV created by
fusion reactions in a deuterium-tritium plasma (50 : 50 D-T). Evaluate the time-
scale for the energy loss of α’s in a plasma with ne = 1020 m−3. Consider the
collisions between three plasma species, assuming Te = TD = TT = 10 keV.

a.) Which species is the most important in the α’s thermalisation process?

b.) Which species is heated more by α’s particles?

Suggestion: start with a thermal energy for the α’s of 3.5 MeV and then consider
the different regimes corresponding to the different energies of the α’s during
the thermalisation.

Recall:

ν
j/k
Ek
∼ nk

Z2
jZ

2
ke

4

2πε20

lnΛk
mjmkv3

j
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Series 4, Exercise 2

Consider the electrons in the ”tail” of the distribution function (v >> vthe).
Show that the collision frequency for these electrons is:

ν = νe/e
′

p + νe/ip = (2 + Z)
nee

4

4πε20

ln Λ

m2
ev

3

Demonstrate that these energetic electrons can be continuously accelerated
(run-away regime) if their energy is higher than a critical value corresponding
to a critical electric field, the Dreicer electric field, ED:

1

2
mev

2 > Te
ED
E

Find an expression for ED and estimate the critical kinetic energy needed for
an electron to enter the run-away regime for the electric field found in Exercise
1 using the same parameters.
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Series 4, Exercise 3

Consider a fully ionized hydrogen plasma in a tokamak (major radius R, minor
radius a) with a toroidal magnetic field B which is considered to be constant in
the plasma (reasonable if a � R). The particle and heat sources are provided
by injection of both neutral beam and electromagnetic waves. The steady state
density profile in the radial direction is experimentally measured and is shown
in the figure below:

­0.6 ­0.5 0.5 0.6

1
n [1020 m­3]

r [ m]

Consider B = 2 T, Te = Ti = 10 keV, n(r = 0) = 1020 m−3, R = 2 m,
a = 0.6 m.

a.) Since a source is needed to maintain such steady state, it is obvious that
the plasma is flowing out radially despite the magnetic confinement. What
process could explain particle transport across the magnetic field? Is it
possible to assert that the measured density profile is compatible with a
diffusive particle transport?

b.) The measured particle flux between r = 0.5 m and r = 0.6 m is Γn =
8 × 1020 m−2s−1. Calculate the effective diffusion coefficient Deff at this
location, and compare it with the classical diffusion coefficient D⊥ that
you would get considering the main collisional process.

c.) What can you conclude concerning the particle transport mechanism in
this plasma?
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Series 5, Exercise 1

a.) Consider the magnetic flux through a given surface moving with the
plasma,

ΦB(t) ≡
∫ ∫

S(t)

B(t) · dS

Starting from the ideal MHD equations, show that the magnetic flux is
frozen in the plasma,

dΦB
dt

= 0

What does this imply on the magnetic topology in such a plasma?

b.) Consider now that the plasma has some finite resistivity. How does this
affect the magnetic flux?

c.) Find the diffusion equation for the magnetic field in a resistive plasma.
Estimate the diffusion time of the magnetic field in ITER (characteristic
length L = 3 m, electron temperature Te = 10 keV).

Recall, the relevant ideal MHD equations are:

∇ ·B = 0

∇×E = −∂B
∂t

E + u×B = 0
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Series 5, Exercise 2

a.) Demonstrate that the propagation of a transverse wave along the z axis
(k = kez) in a string with tension S and mass per unit length M is given
by:

∂2y

∂z2
=
M

S

∂2y

∂t2

b.) Considering the ideal MHD model, demonstrate that the Alfvén waves (or
shear waves), propagating along the magnetic field (k ‖ B0, B0 = B0ez),
can be described with the same equation of a transverse wave in a string.
Identify the terms M and S in the equation in a.) for the Alfvén waves.

c.) The tokamak ITER will operate with a plasma D - T at 13 keV with a
uniform electron density ne = 1020 m−3 and a magnetic field B = 6 T.
Evaluate the phase velocity of the Alfvén waves for that plasma.

d.) Fusion reactions D++T+ → He++
(3.5MeV)+n(14MeV) occur when a plasma is

heated with ion beams D+ with energy of 1 MeV. Which charged particles
are resonant with the Alfvén waves (same velocity with wave)?

Remark: skip part a)

Recall, the linearised ideal MHD equations are:

∂ρ1

∂t
+ ρ0∇ · u1 = 0

ρ0
∂u1

∂t
= −∇p1 +

1

µ0
(∇×B1)×B0

∂B1

∂t
= ∇× (u1 ×B0)

p1 = c2sρ1
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Series 6, Exercise 1

In the lecture we have neglected the effect of collisions in the two-fluid model
used to derive the dispersion relation of a wave in a magnetized plasma.

Consider a cold unmagnetized fluid plasma (T = 0,B0 = 0).

a.) Derive the dispersion relation of waves in such plasma keeping the collision
term in the momentum equation for the electrons.

b.) Show that in this case longitudinal waves (Langmuir waves) are damped.

Recall, the wave equation for E is:[
N2

(
kk

k2
− 1

)
+ ε

]
·E = 0

ε = 1

(
1 +

i

ε0ω
σ

)
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Series 6, Exercise 2

An antenna can detect frequencies around f = 80 MHz and is used to measure
the wave coming from a pulsar producing a broad electromagnetic spectrum.

Due to the dispersion of the group velocity caused by the interstellar plasma,
the measured frequency during a pulse drift varies according to df/dt = −5 MHz · s−1.

a.) Considering ω2 � ω2
p and neglecting the magnetic field in the interstellar

plasma, demonstrate that:

df

dt
≈ − c

x

f3

f2
p

where fp = ωp/2π and x is the distance of the pulsar.

b.) Find the distance of the pulsar in parsec (1 parsec = 3 × 1016 m) consid-
ering a mean electron density in space of 2× 106 m−3.
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Series 7, Exercise 1

∆z

� vide � plasma � vide

E
� 

= E
�
(z,t)ê

x E
�
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E

�
 = ?

z = ∆zz = 0

y

B
0

z

x

Consider the situation displayed above. An electromagnetic wave propagat-
ing along the magnetic field B0 crosses a portion of plasma. In the plasma,
consider the dispersion relation of an electromagnetic wave in a cold uniform
plasma :

N2 =
k2c2

ω2
=

(ω ∓ ωR)(ω ± ωL)

(ω ± Ωi)(ω ∓ |Ωe|)
≈ 1−

ω2
pe/ω

2

1∓ |Ωe|/ω
; (ω � Ωi)

The upper sign is related to the right-handed wave (R) and the lower sign
to the left-handed wave (L).

a.) Show that the rotation (polarization) angle α, when the wave exits the
plasma, is equal to half of the phase difference between the two waves.
Find a relation for α as a function of the distance travelled, ω, Ωe and
ωpe. Consider the limit:

ω2
pe/ω

2

1∓ |Ωe|/ω
� 1

b.) The Faraday rotation of a micro-wave beam (λ = 8 mm) in a uniform
plasma with a magnetic field B0 = 0.1 T is measured. When the beam
propagates through 1 m of plasma, the polarization direction turns of 90◦.
Find the plasma density.

14



Series 7, Exercise 2

Show that in a plasma described by the Vlasov equation:

∂f

∂t
+ ~v

∂f

∂~x
+

q

m
( ~E + ~v × ~B) · ∂f

∂~v
= 0

the entropy, defined in a simple way (without numerical factors) as:

S(t) = −
∫
d~v

∫
d~xf(~x,~v, t) ln (f(~x,~v, t))

is conserved (dS/dt = 0).
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Series 9, Exercise 1

In order to refresh your knowledge of the Laplace transform and complex
analysis, solve the equations of a series RLC circuit using the Laplace transform
method. The capacitor has charge Q0 and we close the circuit at t = 0 (see
figure below).

a.) Write, using the Kirchhoff law, the equation describing the temporal evo-
lution of the charge q.

b.) Find the Laplace transform of q(t), q̃(s), with the initial conditions q(t =
0) = Q0 and I(t = 0) = 0. Suggestion: define R/L = 2δ; 1/(LC) = ω2

LC ,
and consider only the case ω2

LC − δ2 > 0.

c.) Evaluate the temporal evolution of the charge q(t) by inverting Laplace
transform. Comment on the integration path in the complex plane s.

d.) Verify the initial conditions.

R
L

C

Laplace transform of a function f(t):

L{f(t)} =

∫ ∞
0

f(t)e−stdt = f̃(s)

Inverse Laplace transform:

f(t) = L−1{f̃(s)} =
1

2πi

∫ p0+i∞

p0−i∞
f̃(s)estds

where <{p0} > max(<{poles of f̃(s)})

Laplace transform of derivatives:

L

{
df(t)

dt

}
= sL{f(t)} − f(t = 0)

L

{
d2f(t)

dt2

}
= sL

{
df(t)

dt

}
− f ′(t = 0) = s2L{f(t)} − sf(t = 0)− f ′(t = 0)
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Series 9, Exercise 2

Using the general dispersion relation from the Vlasov-Maxwell model:

D(ω, k) = 1 +
∑
α

e2

mαε0k

∫ +∞

−∞
du
dF0α

du

1

ω − ku
= 0

evaluate the dispersion relation of the ion-acoustic waves in the limit kvthi �
ω � kvthe, Te � Ti, and assuming λ ∼ 1/k � λD. Consider F0e and F0i as
Maxwellian distribution functions.

Notice that in the case of waves with low frequency (e.g. the ion-acoustic
waves), both species have to be considered (electrons and ions).
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Series 11, Exercise 2

Evaluate the Landau damping for an ion-acoustic wave solution of the
dispersion relation of the Vlasov-Poisson model,

D(ω, k) = ε(ω, k) = 1−
∑
α

e2

mαε0k2

∫
L

du
dFα0

du

1

u− ω
k

= 0.

where the integral should now be evaluated using Landau’s rule. Suppose to
have a maxwellian equilibrium distribution. Assuming that kvthi � ω � kvthe,
Te � Ti and λ � λD, show that the total damping rate of the wave is γt =
γe + γi, where γe and γi are respectively the electron and ion contributions,

γe ≈ −
√
π

8
kcs

√
me

mi

γi ≈ −
√
π

8
kcs

(
Te
Ti

)3/2

exp

(
− Te

2Ti

)
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Series 12, Exercise 1

Consider a quasi-neutral electron-proton plasma in which an equilibrium current
is flowing. This may be described by a Maxwellian ion distribution at rest and
a drifting Maxwellian for the electrons

Fi(u) =
n√

2πvth,i
exp

[
− u2

2v2
th,i

]
Fe(u) =

n√
2πvth,e

exp

[
− (u− vd)2

2v2
th,e

]

where vth,i, cs � vd � vth,e.

a.) Make a plot of the distribution functions of ions and electrons on the same
scale, look in the region, vth,i < ωr/k � vth,e, and show where you expect
unstable waves might occur.

b.) Consider an ion-acoustic wave: write an expression for the damping/growth
rate, γ, including both electron and ion contributions. Show that the elec-
tron contribution introduces a destabilizing term in the expression of γ.

c.) Demonstrate that the condition Te � Ti is generally required for insta-
bility and justify the result. Show that γ ∼

√
π
8 kvd(me/mi)

1/2 when
Te � Ti.

Recall:

D(ω, k) = ε(ω, k) = 1−
∑
α

e2

mαε0k2

∫
L

du
dFα0

du

1

u− ω
k

= 0.
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Series 12, Exercise 2

Consider a uniform plasma with a fixed population of ions and two different
electron populations:

� a Maxwellian population with density np, temperature Tp and no drift
velocity

� a Maxwellian beam with density nb, temperature Tb and drift velocity
v = V ex

When the magnitude of the beam density nb exceeds a certain threshold the
two-stream instability can develop. As seen in the lecture, the Landau damping
coefficient γ is proportional to the imaginary part of the dielectric function
εi(ωr). Its sign determines wether a given mode can become unstable or not.
Supposing that the phase velocity of the instability, vφ, corresponds to a velocity
v for which the slope of fb(v) is maximum and supposing that V � vth,b, show
that the critical density ratio above which there can be an instability is:

nb
np

=
√
e
Tb
Tp

V

vth,p
exp

(
− V 2

2v2
th,p

)
.
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