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Monlinear ION-ACOUSTIC Waves LR

7.15  NONLINEAR ION-ACOUSTIC WAVES—
KORTEWEG-DeVRIES EQUATION

Up to this point in the fluid theory we have considered only /inear waves. We must
always remember that the theory of linear waves restricts us to very small ampli-
tudes, A wave with a finite amplitude will be susceptible to nonlinear effects,
which show up mathematically as products of first order terms. This section and
the next section are intended to introduce the concept of nonlinear wave eguations
and their corresponding solutions, which often take the form of solitons and shock
waves.

Here we consider an example of one nonlinear wave equation, the Korteweg-
deVries equation {20} i

du + vav + ad’v =0 (7.257)

This equation is obtained by adding one nonlinear term in the derivation of the
jon-acoustic wave equation,

Although it is possible to give a rigorous derivation of (7.257), we give here only
a heuristic derivation that indicates how one might arrive at (7.257). The origin of
the terms in (7.257) is fairly easy to see. The first two terms might arise from the
total time derivative of the ion fluid velocity. The third term can be seen in the
jon-acoustic dispersion relation (7.104), which upon taking 7; = 0, v, = 1, s

r.u ..ww , ,
w? = ek MN\;M {7.258)

The square root of (7.258) is, for small kA,,
Wig a+ »Myawv:wg G ? = izwiiv (7.25%)

If we now multiply (7.259) on the right by the ion fluid velocity v, and identify —iw
with 4, and ik with d,, we obtain

o 2 3
.ww o AR Z: v (7.260)

" ax T 2 o
In aframe x’ = x — ¢t moving with the velocity ¢,, and defining o = A2,
we obtain .
v+ ad v = (7.261)

which are the linear terms in (7.257). The nonlinear term is obtained by replacing
the partial time derivative 8, with the convective time derivative 8, + vd,.

We begin our heuristic derivation with the five fluid equations. Taking T, — 0
so that we can neglect ion pressure in the ion force equation, and taking m, — 0
so that we can neglect electron inertia in the electron force equation, we find

an, + 8, (nV,) =0 (7.262)
0=~ T, 8n — enk (7.263)
an + an¥Vy) = 0 (7.264)

mn; 8.V, + maV, .V, = enk (7.265)

and
a,F = dmwe(n, — n,) (7.266)



where we have chosen y, = 1. We next linearize (7.262) to (7.266) everywhere
MoV, 8.V, term on the left side

except one place: we keep one nonlinear term, the m
of (7.265). We have then

dn, + myd ¥, =0 (7.267)

0= —T,8,n, — enE (7.268)
dny + nad V=0 (7.269)

miny d. V. + mn,V, 0.V, = enE (7.270)
3 = 4mwe(n, — n,) (7.27D)

EXERCISE Can you find seven other nonlinear terms neglected in going from
(7.262)-(7.266) to (7.26M)~(7.271)?

A more rigorous derivation would show us the regime of validity implied by our
neglect of seven other nonlinear terms while retaining only one nonlinear term. It
turns out that this regime is reasonably large.

We next assume a plane wave solution, everywhere except in (7.270). [What
would happen if we tried to assume a plane wave solution ~ exp (—fwt -+ ikx)in
(7.270)?7] We also take v = V, = F,, which means that (7.267) and (7.269) have
the same information; we retain the difference between n,, and n, so that {7.271)
can be used. Solving (7.268) for n,,, we find

en
n, = — Mww; (7.272)
which inserted in Poisson’s equation (7.271) yields
SR kwﬁ;%mm& ;
‘ e e i)
n;y is from (7.269)
k
my =0y (7.274)
Both (7.274) in (7.273) and the result in (7.270) yield
kit s
du + vap = — - sa (1 + A2y (7.275)

Here, we are still treating the right side as linear; therefore @ and k have their
meanings as differential operators, while the left side is nonlinear. It proves conve-
nient to eliminate @ on the right side; we do this by using the linear ion-acoustic
dispersion relation (7.258), which is obtained from (7.275) by ignoring the nonlin-

ear term and replacing the left side with —~iwv. Solving for w and substituting in
the right side of (7.275), we have

du + vau = — dkell + KAy (7.276)
For small kA,, we can expand the right side of (7.276) to obtain
dv + v = — fell ~ mz\%y%vc ? (7.277)

Reinterpreting ik as d,, this becomes

dv+ (¢, + v)dou + ad’v =0 | (7.278)

where & = \2¢,/2. Inthe frame z = x — ¢, this is the Korteweg-de Vries equa-
tion (7.257).

EXERCISE Show the above relationship.

Recall that v(x,?) represents fluid velocity in the laboratory m&gﬁ this w%x::;
cation of v(x,7) remains true even if we transform to a moving Qﬁéﬁ éwi
physics do the various terms in (7.278) represent? The first two terms by them-
e duv 4+ ¢, v =40 {7.27%)
merely represent our old ion-acoustic waves in %w:z& kh, ~— a The ww,ésww m;
(7.279) is simply a dispersionless wave, w = an.,m, with phase <ﬁ,@§@ v, ,,ﬁ,.. @ ; mm,“
¢,, and group velocity dw/dk = ¢, a constant independent of k. Suppose we add
the nonlinear term to obtain i

duv + (¢, + v)dv =10 (7.280)
The effect of the nonlinear term is as follows. Consider an initial waveform %,
shown in Fig. 7.26. As the wave moves, the part with larger v moves @mwﬁm s0 that
it overtakes the part with smaller v. Eventually, at? = 1, &a% is an §$§.ﬁw ﬁowaw
and at ¢ = 15, the wave has broken. Now suppose we had ,,.524%& Ea &%w@%
term in (7.278); the term a @, 'v is called dispersive gn&z% it a@%z@ﬁg a Wz% )
to the linear dispersion relation w = k¢, — ak’; then V, = &2&% = m.m :
3ak?, which depends on k, making this a dispersive wave. ér know %@%%@& ww
dispersion on a wave; it makes a wave packet wqua out as i :,,?Qm ,H W;Hm ,WM@:
opposite to the steepening :?;._.:.; in the ,:mﬁd. Consider mxw :zw@ S,»JMNW.?
t = t, and ¢ = r,. Here, the slope is becoming very wﬁma, A .r:,maowmwwww
sponds to a large x-derivative, which makes the « m&w term in (7.2 Vy gammgw
large. Since we know that the effect of this « 8, v term is to %3@ 9,;(» 1€ 5Q§<
we might expect that there could be a balance between the ﬂcmr:wm“ .iww@amuaw
and the linear dispersion. Indeed this is the case. One can obtain ssgéma S&M@
packets, known as selitons, which travel without change of mgﬁ@ %ﬁ, ,Néw‘ The
physical basis for these solitons involves a balance between dispersion and non-
linearity.

v{x,t)

Fig. 7.26 Effect of the ponlinear term in (7.282).



Fig, 727 Sketch of a soliton solution.

Let us proceed to find a soliton solution to the Korteweg-de Vries equation
(7.278). We look for stationary solutions ina moving frame,

*

XX = et . (7.281)
U=y (7.282)
$0 that
d, = Qx\\mxvmx + (81 / 9x)d,, = d, (7.283)
and
4, = Qx\\%vmﬁ + (0r7an9, = 9y = vy, (7.284)

Since stationary implies d, = 0, the Korteweg-deVries equation (7.278) becomes
(—v + ¢, + v dev + @ dly = 0 (7.285)
Remember that v(x’,1") is still that function of Space and time which represents the

fluid velocity in the Jab frame. Equation (7.285) can be integrated once immediate-
ly, to give

(¢, = vo)v + fm; + av” = g (7.286)

where( ) = de( ) and we have taken the integration constant to vanish. Equa-
tion (7.286) is in the form

CM

ay” = (py, - chv — 5 (7.287)
which has the same mathematical form as Newton’s law of motion,

m¥ = Fy) = - a,.V(x) (7.288)
where F(x) is the potential energy. Thus, (7.287) has the form

2 3
av” = - %c M‘Aﬁ,a - Cov f.Wil + !;@cfw AQN%GV

Equation (7.289) has the same mathematical form as a force equation for a parti-
cle of mass o moving under the influence of a potential field given by the quantity
in brackets. We call the quantity in brackets the pseudopotential,

3

PO = e = vy G- 4+ 2 (7.290)

A graph of ¢(v) is shown for ¢, — Yo > 0in Fig. 7.28. A similar graph of the
pseudopotential ®(v) for (¢, — vp) < 0 is shown in Fig. 7.29. Only the second
form is suitable for our purposes. This is because we desire a localized wave form,
U(x’ = Fo0) ~ 0 This will occur in Fig. 7.29 when the pseudoparticle leaves
v = ( when the pseudotime x* — oo, falling once through the well to reach vy,
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Fig. 7.28 Sketch of pseudopotential when ¢, > y,.

atx’ = 0, and taking an infinite amount of pseudotime x’ to ?.: back &::zmw t
well to reach v = 0 as the pseudotime ¥’ — o0, We thus obtain :wo shape show
in Fig. 7.30. The pseudopotential in Fig. 7.28 would not m:ségx@ - %o& -
Let us now solve (7.287) exactly, with ¢, — vy < 0 or v, > ¢ We all w:s
how to solve force equations of the form (7.287). Multiply Q»mmw:émmm

integrate, to obtain, ; w
W) = ) o - L 7.29:
5 (') = {vy — o) ) & {

where we have chosen the constant of integration to be zero because we war
v = 0 when v = (Fig. 7.30). Then

d 2\ v T 593
me‘. = oyl A;M%v MASW. = ) 5T z&iw {7.292
or ~
dv . = va Cdx (7.293
(o — <) 2 ;mw* v o
2V 6
Each side of (7.293) can be integrated. The left side is of the form
1= \ 4 (7.294
y v~ Bo 1 — puv

where B = 1/[3(vy ~ ¢)]. Letu = \/T = Bu. then v = (1 — v¥y/Band du =

(=B dv/2)/A/1 — Buv. We find

P (v}

. 1

<~§»x

Fig. 7.29 Sketch of pseudopotential when ¢, < y,.
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Fig. 7.36  Sketch of soliton solution to the Korteweg-deVries equation.

S %.;z\ 1 1 \_ . (1=u
e ;m.\hizw; %T;:+_+gv;5?+:v:.§v

Then
A : & ; vg In A . “v = vag X (7.296)
from (7.293). With v = [(v, — ¢,)/a]'”, and exponentiating both sides, we get
= (7.297)
Then 1 — u = (1 - w)er, implying that
= w e (7.298)

and v = (1 — VB is

] AN L 3742 2y X’
gl ? + e = (1 — ) H il T M&éL (7.299)

B (s b B
or
A glie] 4 SRl G )
VT B (@I ¥ e T g sech® (yx'/2) (7.300)
which is x
i 12
v = 3(up — c,) sech? : Bt v x M (7.301)

In fact, this solution has only been derived for x” < 0 since we chose the v' > 0
branch in (7.292); nevertheless, it would be easy to obtain the part of (7.301) for
x” 2> 0 by choosing the v' < 0 branch in (7.292); therefore, (7.301) applies to all
x" and is the soliton solution. Note that the larger amplitude solitons are more
sharply peaked, having a smaller scale length, This behavior is in accordance with
our picture of nonlinearity v d,v which balances dispersion 8,’v (Fig. 7.31). Back
in the lab frame, where x = x’ -+ u,t, this solution is

4o

i 12
v(x,t) = 3(u, ~ ¢,)sech? : ey v (x — 303._ (7.302)




