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Exercise 1

L

~ — -dQ/dt
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Figure 1: Circuit at t = 0T.

a) Att =07 (figure 1), the capacitor discharges (initial charge Qg), a current
I circulates and a voltage appears on each component:

Ve = BI(),  Ve=10 Vo=l [Qo—/tl(t’)dt’} -0
0

dt
(1)
From the Kirchhoff’s law, the sum of the voltages around any closed circuit
must be zero:

Veyele = »_Vi=0,  Vt. (2)

Using equation (2) on our circuit:
Ve+ VL +Ve=0

and substituting the expression of the voltage on each component, eq.(1),

we find: .
LQ(t) + RQ(t) + % =0.
b) Introducing the quantities:
R , 1
0=5r Wio=71g (3)
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Figure 2: Solving differetial equations with Laplace.

we have:

(1) +20Q(t) + w3 Q(t) = 0. (4)
The solution of equation (4) is the temporal evolution of the charge in the
capacitor. To solve it, we have two possibilities (see figure 2):

e Solve the system on the real-variables domain (position, time, ...)

e Use the Laplace transform to produce an easily solvable algebraic
equation. From the solution in the Laplace domain, we can then find
the general solution of the original differential equation using the
inverse Laplace transform. The last step can be more complicated
from the mathematic point of view.

To refresh the properties of the Laplace transform, we can solve the (4)
using this method.

The Laplace transform:
(s° +26s+wic) Q(s) — (54+28)Qo — Qo =0 (5)
and, using the initial conditions’:

Q) = Q
{Qw): 0 (6)

we have:

~ (s +26)Qo

)= st @

¢) The eq. (7) is the solution in the Laplace space. To obtain the solution
in the real-space, we need to use the inverse Laplace transform:

1 po+ico

Q) = Q(s) e™ds. (8)

270 Jpo—ico

1) = 0 because there is no current when f < 0.



Inverse Laplace transform

The poles of Q(s) are:

2 +20s+wic=0 = S120=—0Ei\/wi,— 082
—_——
Wy

because w? - — 0% > 0 and defining wy = § + iw,:
24205+ wio = (s+wo)(s+wy), (9)
therefore:

Q(t)

po~+ico
1/ (s £20Q0 _ utyy (10)
p

T2 Jpy i (5t wo)(s +wp)

Notice that the poles have a negative real part (figure 3).
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Figure 3: Poles of Q(s) in the complex plane

To solve equation (10) we use the method of residues:

if(s)ds = 2mi ZRi, (11)

where R; are the residues of f(s) in the region delimited by the contour

C.

We can choose our contour arbitrarily (Cauchy theorem, figure 4). It has
to include the path (pg —ic0, pg +i00) and it has to be closed with a curve
I". There are two possibilities:

(a) Path C = (py — ic0,pg + i00) + I'y. The residues are not in the
integration domain, therefore:

fres=o0 = /:ﬁmﬂs)ds [ sisyas

0—100

We can use this method if the integral over I'; can be easily computed.



Figure 4: Left: Integration path in the complex plane. Right: Variable substi-
tution to compute the integral in the complex plane.

(b) Path C = (po — @00, pg + ico) + I's. We find:

ff(s)ds = 2mi Z R; = /PO-H'OO f(s)ds = 2mi Z R,— | f(s)ds
c p I

i=1,2 0 =100 i=1,2

and, if we can show that:
f(s)ds =0,
I'>

we can evaluate the integral (10) from the residues.
With the substitution (figure 4)
s=re? = ds = ire'®d¢

and choosing py = 0 (since Re{poles of Q(s)} < 0), we have:

B potm
/ Q(s)estds =i / Q(s) re'® exp{ [re'® t] }do.
Iy, 0

If we take the norm of the integral:

¢o+m ¢o+m ) )
/ Q(s)eds| = z/ Q(s)rezd’exp{[rewt]}d(b <
%o %o
dotm | do+m
< [ |ae rewlireoso+ ismoyii|do= [ || et tas. (12)
%o %o

Changing the value of ¢y we can consider both cases:

(a) ¢o = —7/2, ¢ € [—7/2,7/2]: we close the integration path on the
right side of the integration domain.
The cos ¢ term on the right side of equation (12) is positive (or zero)
and, for ¢ > 0:

w/2

< lim ﬂ@(s)

re”‘cosd’ldqﬁ = 0.
=00 ) /2

Q(s) e*tds

I

Therefore we don’t have any information on the value of the integral.
So, with this method we can’t solve the integral.



(b) ¢o = 7/2, ¢ € [7/2,7/2 + 7|: we close the integration path on the
left side.
3/2w

Q(s) e*tds

g/ Q)] |e**[ds| = 1im
s

r—00 x/2

Q(S)‘ ,re—rt\cos¢|d¢

s

Since ‘Q(reid’)‘ — L for r — o0, it is sufficient to show that:
lim, o fj//gh %,re—rt\cos ¢ldp =0

in order to prove that [}, Q(s) e*tds = 0.

3/2n 1 w/2+e€ 3/2m—e
/ - 7’67”‘ cos ¢|d¢ _ / efrt\ cos ¢|d¢ + / efrt| cos ¢7|d¢ +
™ r /2 T

/2 /24e€
<e <mee—rTtsine
3/2m )
/ e—rt|cos¢|d¢ <2.e+ ﬂ_e—rtsm(e) (13)
3/2m—e¢

<e

It follows that for any small § > 0 there is r such that:

fj//zz’ﬂ el C°S¢|d¢) < 4, therefore, lim,_, o, fj//jw el COSWd({) =0

s ‘Q(s)’ re"teosdldg = 0 is
to use Bounded Convergence Theorem that allows us to move the
lim,_, o into the integrand:

Another way to prove that lim, . |’ 3/2m

3/2m
lim
=00 [ 9

~ 3/2m _
Q(s)‘ re=Heos 8l g :/ lim ‘Q(s)‘ rerte0s 8l g
m/2

T—>00

Now, if ‘Q(re“ﬂ‘ goes to zero with r — oo at least as 1 (which is the

case here), the integrand goes to zero everywhere, except for ¢ = 7/2
and ¢ = 37 /2. Hence, the integral is equal to zero.

From both proofs, we see that the contribution to the integral over
the curve I's is zero, therefore:

po-+ioco
/  f(s)ds =2mi > Resi(f(s)). (14)

i=1,2

Evaluation of the residues

For equation (10) and equation (14):

Ppo+1i00
p

. +20)Qo
— st — 1 . (S st
271 0 —ioo (s—l—wo)(s—l—w(*)) e”ds Z SLH“L(S wl) (s—|—w0)(s—|—w8) ¢

Wi=w1,2



where:

w1 = —wo, wo = —wj;
st st
=Q(t) = s_lj_mwﬂ(s + wo)% + SE%;;(S + wg‘)% =
_ (oo +20)Quen ! (—uf +20)Que 15)
—wo + Wy —wq + wo
and since:
—wo + 20 =0 — iw,, —wo + wy = —2iw,,
we can obtain the solution for ¢ > 0:
Q) =Qoe™ |:COS (wyt) + wi sin (wvt)} . (16)
y

Verification of the initial conditions and physical interpretation

Q(t=0)=Qpe " [cos (wy-0)+ wi sin (w- - 0)] =Qo. (17)

Y

I(t) = Q(t) = Qoe % [(5 08 (wyt) — wy sin (wyt) — 0 cos (wyt) — f}i sin (wt)

N
52 + 2
=—Qo “7 sin (wyt)e 0" (18)
Wy
. 52 + 2
=It=0)=Q(t=0)=—-Qo w “Y sin (wy-0)e 20 =0 (19)
Y

Indeed, the solution given by Eq. 16 satisfies the initial conditions.

Equation 16 is describing an oscillatory phenomena with frequency w,
damped according to the damping rate ¢ (figure 5).

The only dissipative term is the resistance R, and clearly § o« R. The
oscillation frequency is linked to the “active” components L and C.
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Figure 5: Solution in the real domain.

Exercise 2

In the equation:

62 & dFOa 1
D(w,k)=1 : du = 2
(w, k) +; Me ok /,oo du w—ku u=0 (20)

we have to consider separately the two species, electrons and ions, with the
approximation:
kvgns < w < kg e, (21)

For the ions, we can use the following expansion:

1 1 ku
~— 14+ —+ .. 22
w—Fku w [ + w + ] (22)
and, for the electrons:
1 1
—_— . 23
w — ku ku (23)

Now we have to solve the Landau integral for the two species:

Ions
*© dFy; 1 © dFy; [1 Kk
/ 0. du %/ =0 {— + —Z] du (24)
oo du w—ku oo du W w
but the integral
1 (% dFy;
- / %L gy (25)
w J_o du



vanishes because it is the integral over (—oo,00) of an odd function, therefore:

~

u R —
du w—ku w? J_ du w? ’

k
udu = — | Fyu

/°° dFo; 1k % dR,

=0

Electrons

/°° dFy.e 1 du _l/"o dFy.. d7u
du w—ku Tk du u

—0o0 — 00

and, since Fp . is Maxwellian:

dFoe u
c__ " R..
du V2 0,

o dFy . 1 1 o du Ne
: du =~ Foe — = ——
/,Oo du w—ku " kg, / CH0e T T T2

Dispersion relation

We obtain:

Combining the results from the previous section:

2 2 2 2

e“n; 1 e‘n 1 ws w
D(w,k)~1— 27+ - 5z =1 pél+ 2p§e =0.

mieg W me €0 k2vg, . w k2vg, .

We want to find an explicit expression for w = w(k):

1
UJ2 = (JJ2 .
p,t 2
w
1 + e
k20?2
th,e

The term w? . /(k*vg, ) can be written as:

2
Wp,e 1

2,2 12)2°
k2vh . k2AD

0o oo
—/ FOJ' du
— 0 oo

(26)

(28)

(30)

(31)

(32)

where Ap is the Debye length. In the case of wave lengths A ~ 1/k much bigger

than Ap we have:

2 2 2
w w w
pe 51 1 pe . Ype
k202 k202 k202
th,e th,e th,e

and )
W2 = w? 1 ~ Ui
psi 2 w2

1 + b,€ p,e

2,2
k vth,m

(33)

_ kni




but

2
Wpi o _ Me Te_Te_ 2 35
5 Uth,e = = = Cs) ( )
wp’e m; Mme m;

w? = k22 (36)
We still need to verify the initial assumptions. Notice that w/k = ¢, therefore:

%=%<%m (37)

since ¢;/Vgh,e = \/Me/m; < 1, and

% = Cs > Vgh, (38)

that is satisfied if ¢ /vgn; = /Te/T; > 1.

Notice that the condition T, /T; > 1 is necessary to avoid a strong damping
of the ion-acoustic wave.



