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Exercise 1

Figure 1: Circuit at t = 0+.

a) At t = 0+ (figure 1), the capacitor discharges (initial charge Q0), a current
I circulates and a voltage appears on each component:

VR(t) = RI(t), VL = L
dI(t)

dt
, VC = − 1

C

[
Q0 −

∫ t

0

I(t′)dt′
]
= −Q(t)

C
.

(1)
From the Kirchhoff’s law, the sum of the voltages around any closed circuit
must be zero:

Vcycle =
∑
i

Vi = 0, ∀ t. (2)

Using equation (2) on our circuit:

VR + VL + VC = 0

and substituting the expression of the voltage on each component, eq.(1),
we find:

LQ̈(t) +RQ̇(t) +
Q(t)

C
= 0.

b) Introducing the quantities:

δ =
R

2L
, ω2

LC =
1

LC
, (3)
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éq. différentielle solution de l’éq. différentielle

éq. algébrique solution de l’équation algébrique
résolution facile

résolution impossible?

inverse Laplace (difficile)Laplace (facile)

Figure 2: Solving differetial equations with Laplace.

we have:
Q̈(t) + 2δQ̇(t) + ω2

LCQ(t) = 0. (4)

The solution of equation (4) is the temporal evolution of the charge in the
capacitor. To solve it, we have two possibilities (see figure 2):

• Solve the system on the real-variables domain (position, time, ...)

• Use the Laplace transform to produce an easily solvable algebraic
equation. From the solution in the Laplace domain, we can then find
the general solution of the original differential equation using the
inverse Laplace transform. The last step can be more complicated
from the mathematic point of view.

To refresh the properties of the Laplace transform, we can solve the (4)
using this method.

The Laplace transform:(
s2 + 2δ s+ ω2

LC

)
Q̃(s)− (s+ 2δ)Q0 − Q̇0 = 0 (5)

and, using the initial conditions1:{
Q(0) = Q0

Q̇(0) = 0
(6)

we have:

Q̃(s) =
(s+ 2δ)Q0

s2 + 2δ s+ ω2
LC

. (7)

c) The eq. (7) is the solution in the Laplace space. To obtain the solution
in the real-space, we need to use the inverse Laplace transform:

Q(t) =
1

2π i

∫ p0+i∞

p0−i∞
Q̃(s) estds. (8)

1Q̇ = 0 because there is no current when f < 0.
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Inverse Laplace transform

The poles of Q̃(s) are:

s2 + 2δ s+ ω2
LC = 0 ⇒ s1,2 = −δ ± i

√
ω2
LC − δ2︸ ︷︷ ︸
ωγ

because ω2
LC − δ2 > 0 and defining ω0 = δ + iωγ :

s2 + 2δ s+ ω2
LC = (s+ ω0)(s+ ω∗

0), (9)

therefore:

Q(t) =
1

2π i

∫ p0+i∞

p0−i∞

(s+ 2δ)Q0

(s+ ω0)(s+ ω∗
0)

estds. (10)

Notice that the poles have a negative real part (figure 3).
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Figure 3: Poles of Q̃(s) in the complex plane

To solve equation (10) we use the method of residues:∮
C
f(s)ds = 2πi

∑
i

Ri, (11)

where Ri are the residues of f(s) in the region delimited by the contour
C.

We can choose our contour arbitrarily (Cauchy theorem, figure 4). It has
to include the path (p0− i∞, p0+ i∞) and it has to be closed with a curve
Γ. There are two possibilities:

(a) Path C = (p0 − i∞, p0 + i∞) + Γ1. The residues are not in the
integration domain, therefore:∮

C
f(s)ds = 0 ⇒

∫ p0+i∞

p0−i∞
f(s)ds = −

∫
Γ1

f(s)ds.

We can use this method if the integral over Γ1 can be easily computed.
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Figure 4: Left: Integration path in the complex plane. Right: Variable substi-
tution to compute the integral in the complex plane.

(b) Path C = (p0 − i∞, p0 + i∞) + Γ2. We find:∮
C
f(s)ds = 2πi

∑
i=1,2

Ri ⇒
∫ p0+i∞

p0−i∞
f(s)ds = 2πi

∑
i=1,2

Ri−
∫
Γ2

f(s)ds

and, if we can show that: ∫
Γ2

f(s)ds = 0,

we can evaluate the integral (10) from the residues.

With the substitution (figure 4)

s = r eiϕ ⇒ ds = ireiϕdϕ

and choosing p0 = 0 (since Re{poles of Q̃(s)} < 0), we have:∫
Γ1,Γ2

Q̃(s) estds = i

∫ ϕ0+π

ϕ0

Q̃(s) reiϕ exp
{[

reiϕ t
]}

dϕ.

If we take the norm of the integral:∣∣∣∣∣
∫ ϕ0+π

ϕ0

Q̃(s)estds

∣∣∣∣∣ =
∣∣∣∣∣i
∫ ϕ0+π

ϕ0

Q̃(s)reiϕ exp
{[

reiϕ t
]}

dϕ

∣∣∣∣∣ ≤
≤

∫ ϕ0+π

ϕ0

∣∣∣Q̃(s) r exp{[r(cosϕ+ i sinϕ) t]}
∣∣∣ dϕ =

∫ ϕ0+π

ϕ0

∣∣∣Q̃(s)
∣∣∣ rert cosϕdϕ. (12)

Changing the value of ϕ0 we can consider both cases:

(a) ϕ0 = −π/2, ϕ ∈ [−π/2, π/2]: we close the integration path on the
right side of the integration domain.

The cosϕ term on the right side of equation (12) is positive (or zero)
and, for t > 0:∣∣∣∣∫

Γ1

Q̃(s) estds

∣∣∣∣ ≤ lim
r→∞

∫ π/2

−π/2

∣∣∣Q̃(s)
∣∣∣ rert| cosϕ|dϕ = ∞.

Therefore we don’t have any information on the value of the integral.
So, with this method we can’t solve the integral.
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(b) ϕ0 = π/2, ϕ ∈ [π/2, π/2 + π]: we close the integration path on the
left side.∣∣∣∣∫

Γ2

Q̃(s) estds

∣∣∣∣ ≤ ∫
Γ2

∣∣∣Q̃(s)
∣∣∣ ∣∣est∣∣ |ds| = lim

r→∞

∫ 3/2π

π/2

∣∣∣Q̃(s)
∣∣∣ re−rt| cosϕ|dϕ

Since
∣∣∣Q̃(reiϕ)

∣∣∣ → 1
r for r → ∞, it is sufficient to show that:

limr→∞
∫ 3/2π

π/2
1
r re

−rt| cosϕ|dϕ = 0

in order to prove that
∫
Γ2

Q̃(s) estds = 0.

∫ 3/2π

π/2

1

r
re−rt| cosϕ|dϕ =

∫ π/2+ϵ

π/2

e−rt| cosϕ|dϕ︸ ︷︷ ︸
<ϵ

+

∫ 3/2π−ϵ

π/2+ϵ

e−rt| cosϕ|dϕ︸ ︷︷ ︸
<π·e−rt sin ϵ

+

∫ 3/2π

3/2π−ϵ

e−rt| cosϕ|dϕ︸ ︷︷ ︸
<ϵ

< 2 · ϵ+ πe−rt sin(ϵ) (13)

It follows that for any small δ > 0 there is r such that:∫ 3/2,π

π/2
e−rt| cosϕ|dϕ < δ, therefore, limr→∞

∫ 3/2,π

π/2
e−rt| cosϕ|dϕ = 0

Another way to prove that limr→∞
∫ 3/2π

π/2

∣∣∣Q̃(s)
∣∣∣ re−rt| cosϕ|dϕ = 0 is

to use Bounded Convergence Theorem that allows us to move the
limr→∞ into the integrand:

lim
r→∞

∫ 3/2π

π/2

∣∣∣Q̃(s)
∣∣∣ re−rt| cosϕ|dϕ =

∫ 3/2π

π/2

lim
r→∞

∣∣∣Q̃(s)
∣∣∣ re−rt| cosϕ|dϕ

Now, if
∣∣∣Q̃(reiϕ)

∣∣∣ goes to zero with r → ∞ at least as 1
r (which is the

case here), the integrand goes to zero everywhere, except for ϕ = π/2
and ϕ = 3π/2. Hence, the integral is equal to zero.

From both proofs, we see that the contribution to the integral over
the curve Γ2 is zero, therefore:∫ p0+i∞

p0−i∞
f(s)ds = 2πi

∑
i=1,2

Resi(f(s)). (14)

Evaluation of the residues

For equation (10) and equation (14):

Q(t) =
1

2πi

∫ p0+i∞

p0−i∞

(s+ 2δ)Q0

(s+ ω0)(s+ ω∗
0)

estds =
∑

ωi=ω1,2

lim
s→ωi

(s−ωi)
(s+ 2δ)Q0

(s+ ω0)(s+ ω∗
0)

est

5



where:
ω1 = −ω0, ω2 = −ω∗

0

⇒ Q(t) = lim
s→−ω0

(s+ ω0)
(s+ 2δ)Q0e

st

(s+ ω0)(s+ ω∗
0)

+ lim
s→−ω∗

0

(s+ ω∗
0)

(s+ 2δ)Q0e
st

(s+ ω0)(s+ ω∗
0)

=

=
(−ω0 + 2δ)Q0 e

−ω0t

−ω0 + ω∗
0

+
(−ω∗

0 + 2δ)Q0 e
−ω∗

0 t

−ω∗
0 + ω0

(15)

and since:

−ω0 + 2δ = δ − iωγ , −ω0 + ω∗
0 = −2i ωγ ,

we can obtain the solution for t ≥ 0:

Q(t) = Q0 e
−δt

[
cos (ωγt) +

δ

ωγ
sin (ωγt)

]
. (16)

d) Verification of the initial conditions and physical interpretation

Q(t = 0) = Q0 e
−δ·0

[
cos (ωγ · 0) + δ

ωγ
sin (ωγ · 0)

]
= Q0. (17)

I(t) = Q̇(t) = Q0 e
−δt

[
δ cos (ωγt)− ωγ sin (ωγt)− δ cos (ωγt)−

δ2

ωγ
sin (ωγt)

]
= −Q0

δ2 + ω2
γ

ωγ
sin (ωγt)e

−δt. (18)

⇒ I(t = 0) = Q̇(t = 0) = −Q0

δ2 + ω2
γ

ωγ
sin (ωγ · 0)e−δ·0 = 0 (19)

Indeed, the solution given by Eq. 16 satisfies the initial conditions.

Equation 16 is describing an oscillatory phenomena with frequency ωγ

damped according to the damping rate δ (figure 5).

The only dissipative term is the resistance R, and clearly δ ∝ R. The
oscillation frequency is linked to the “active” components L and C.
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Figure 5: Solution in the real domain.

Exercise 2

In the equation:

D(ω, k) = 1 +
∑
α

e2

mα ε0k

∫ ∞

−∞

dF0,α

du

1

ω − ku
du = 0 (20)

we have to consider separately the two species, electrons and ions, with the
approximation:

kvth,i ≪ ω ≪ kvth,e. (21)

For the ions, we can use the following expansion:

1

ω − ku
≈ 1

ω

[
1 +

ku

ω
+ ...

]
(22)

and, for the electrons:
1

ω − ku
≈ − 1

ku
. (23)

Now we have to solve the Landau integral for the two species:

Ions ∫ ∞

−∞

dF0,i

du

1

ω − ku
du ≈

∫ ∞

−∞

dF0,i

du

[
1

ω
+

ku

ω2

]
du (24)

but the integral
1

ω

∫ ∞

−∞

dF0,i

du
du (25)
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vanishes because it is the integral over (−∞,∞) of an odd function, therefore:

∫ ∞

−∞

dF0,i

du

1

ω − ku
du ≈ k

ω2

∫ ∞

−∞

dF0,i

du
u du =

k

ω2

F0,iu
∣∣∣∞
−∞︸ ︷︷ ︸

= 0

−
∫ ∞

−∞
F0,i du

 = −kni

ω2

(26)

Electrons ∫ ∞

−∞

dF0,e

du

1

ω − ku
du ≈ −1

k

∫ ∞

−∞

dF0,e

du

du

u
(27)

and, since F0,e is Maxwellian:

dF0,e

du
= − u

v2th,e
F0,e. (28)

We obtain: ∫ ∞

−∞

dF0,e

du

1

ω − ku
du ≈ 1

kv2th,e

∫ ∞

−∞
uF0,e

du

u
=

ne

kv2th,e
(29)

Dispersion relation

Combining the results from the previous section:

D(ω, k) ≈ 1− e2 ni

mi ε0

1

ω2
+

e2 ne

me ε0

1

k2v2th,e
= 1−

ω2
p,i

ω2
+

ω2
p,e

k2v2th,e
= 0. (30)

We want to find an explicit expression for ω = ω(k):

ω2 = ω2
p,i

1

1 +
ω2
p,e

k2v2th,e

. (31)

The term ω2
p,e/(k

2v2th,e) can be written as:

ω2
p,e

k2v2th,e
=

1

k2λ2
D

, (32)

where λD is the Debye length. In the case of wave lengths λ ∼ 1/k much bigger
than λD we have:

ω2
p,e

k2v2th,e
≫ 1 ⇒ 1 +

ω2
p,e

k2v2th,e
≈

ω2
p,e

k2v2th,e
(33)

and

ω2 = ω2
p,i

1

1 +
ω2
p,e

k2v2th,e

≈
ω2
p,i

ω2
p,e

k2v2th,e, (34)
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but
ω2
p,i

ω2
p,e

v2th,e ≡
me

mi

Te

me
≡ Te

mi
= c2s, (35)

therefore the dispersion relation for the ion-acoustic waves is:

ω2 = k2c2s. (36)

We still need to verify the initial assumptions. Notice that ω/k = cs, therefore:

ω

k
= cs ≪ vth,e (37)

since cs/vth,e =
√
me/mi ≪ 1, and

ω

k
= cs ≫ vth,i, (38)

that is satisfied if cs/vth,i =
√
Te/Ti ≫ 1.

Notice that the condition Te/Ti ≫ 1 is necessary to avoid a strong damping
of the ion-acoustic wave.
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