Plasma Physics 1
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Exercise 1
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Figure 1: A wave that propagates along z on three different regions: vacuum -
plasma - vacuum.

Region D
In vacuum, we have:
E(Z, t) = E@(Z, t) = Fyé, ei(kz z—wt) (1)

Notice that a linearly polarized wave can be seen as a combination of two cir-
cularly polarized waves with the same phase velocity.

Region (2

Due to the anisotropy induced by the magnetic field éo, the two modes R and L
propagate through the plasma with different phase velocity. Indeed, the electric
field of the R mode rotates in the same direction of the electron cyclotron motion
while the L mode rotates in the opposite sense, that is that of the ions.



The electric field E is given by:
E=E,+Eg (2)

therefore

Ba(z,t) = | Bu(e, — i6,) €™ % + Bp(e, +ie,) =] e, (3)

where the wave vectors are:
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To evaluate the amplitudes Er, Ef, of the two modes, we can use the match-
ing condition (for each t) at z = 0:

E@(Z:07t) :E®(Z:07t)v Vit (5)
obtaining:
Eoé, = Er(ésy —iéy) + Ep(éy + iéy) (6)
and, using the condition vecE = Fé, for z < 0 (i.e. E, = 0):
Ey

EL:ER:? (7)

Region 3

Without plasma, the two modes propagate again with the same phase velocity.
The wave is linearly polarized but the polarization angle is different according
to the direction of the two modes at z = Az.
The electric field Ee at the position z = Az is:
- Ey

Ba(z = Azt) = = [(éw —i6,) eME A% 4 (6, +i6,) erAz| gt (8)

a) FEvaluation of the rotation angle

To find the direction of the wave leaving the plasma region (7 = 7i(é, éy))
we need to rewrite the eq.(8) as a function of the rotation angle « of the
electric field around the z axis.

Using the identity:
kr+k krp —k
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we find:
E@(Z = Az,t) = % ei(%Az—wt) |:é:v (ei%Az + e_i%Az) n
—iéy (ez ELOER Ny —i SLGRR Az) }
(11)



and, from the relation:

o —

€' =cosa + isina. (12)

Considering the symmetry/asymmetry of the trigonometric functions, we
find:

- i( BBEEL ALy, . krp —k . (kr—k
Eo(z = Az,t) = Fqge ( R t) [em cos (LQRAZ) + é,sin <L2RAZ)]

f(z = Az) = f(z > Az)

(13)
The polarization angle « is then equal to:
krp —k
a=-L""BA; (14)
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is verified, we can use the approximation (1 — 2)/2 ~ 1 — x/2 and write

kR, kL as:
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Finally!
o & u)lg‘e | QE | (18)
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1Dimensional analysis. The angle is given in [rad] (i.e. without dimension):
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b) Density measurement
In the region (2) we have a uniform plasma with a magnetic field B = 0.17".
The wavelength of the microwave beam is A = 8mm, that corresponds to

a frequency:
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The phase difference at z = Az is & = /2. Using the definition of plasma
frequency and electron gyrofrequency:
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in the eq.(18) we have
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We still need to verify the assumption in the eq.(15). From the value of
the density found above, we have:

wge/w2
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Therefore we can conclude that the approximation is valid and the result
is correct.

~0.05+0.06 < 1. (22)

Exercise 2

Vlasov equation for the « species:

Ofa | Ofa . Ofa
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with a = 2 (E 4 v x B) or, in a different form:
Ofa | 0 0 B
E+afx'(vfa)+%'(afa)*0

There are two contributions to the total energy: the first, E,, is coming from
the particles and the other, Ey, is related to the electromagnetic field:

E,(t) = Z/dgx/dgv %mazﬂfa()gv,t) (23)
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Es(t) = /d% (250E2 + 2u032> (24)



For the particles:
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Notice:
From Gauss’s theorem:

[ o i) = [ve-as

and this integral vanishes because as |x| — oo, f approaches zero quickly.
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=0 using Gauss’s theorem
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For the fields:
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Using the vector identity:
V- (ExB)=B:-(VxE)—-E-(VxB),
we can write:

/d%[E(VxB)—B-(VxE)} :—/d%v-(ExB):/S(ExB)-dazo;

at infinity, the fields approach zero to keep a finite energy.
Finally, we obtain:
dEyt dE, dEf
-~ dt ' odt
dEy  dE,
dt - dt

=0 The total energy is conserved

/ dzj-E Work of the field E



