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Exercise 1

a Let us consider a cold plasma: T = 0 → p = 0. The momentum
equation for the plasma species α (keeping the collision term) is:

mα
dvα

dt
= qα(E+ vα ×B)− ναmαvα (1)

The collision frequency να for species α is taken as a generic coefficient,
which could be due to collisions with neutrals or with charged particles.
Since we want to determine the main effects of collisions on longitudinal
waves, we model collisions in the simplest possible way, namely assuming
να to be a constant.

Assuming a uniform equilibrium with B0 = 0, E0 = 0 and vα,0 = 0, the
linearised momentum equation (using the notation vα,1 = vα, E1 = E)
is:

mα
∂vα

∂t
= qαE− ναmαvα. (2)

The Fourier tranformation gives:

−iωvα =
qα
mα

E− ναvα (3)

and, for the velocity vα:

vα =
qα/mα

να − iω
E = i

qα/mα

ω + iνα
E (4)

Now we have a relation between the velocity and the electric field. We
can then find the relation j = j(E) (constitutive equation):

j =
∑
α

qαn0αvα = iϵ0
∑
α

q2αn0α

ϵ0mα(ω + iνα)
E (5)

therefore the conductivity is:

σ = iϵ0
∑
α

ω2
pα

ω + iνα
(6)

We can notice that the system is isotropic, since nothing is perturbing
the symmetry (for example a magnetic field B0 ̸= 0). Therefore, the
conductivity is a scalar quantity.
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The dielectric tensor can be evaluate with the following expression:

ϵ = 1

(
1 +

i

ϵ0ω
σ

)
= 1

(
1−

∑
α

ω2
pα

ω(ω + iνα)

)
= ϵ1 (7)

The wave equation for E is:[
N2

(
kk

k2
− 1

)
+ ϵ⃗

]
︸ ︷︷ ︸

D⃗

·E = 0 → D⃗ ·E = 0 (8)

and, choosing k = kêz

kk =

 0 0 0
0 0 0
0 0 k2

 ⇒ D⃗ = N2

 −1 0 0
0 −1 0
0 0 0

+

 ϵ 0 0
0 ϵ 0
0 0 ϵ

 = (9)

=

 ϵ−N2 0 0
0 ϵ−N2 0
0 0 ϵ

 (10)

We find the following dispersion relation:

det D⃗ = 0 ⇒ ϵ
(
ϵ−N2

)2
= 0 (11)

which has one solution for the longitudinal wave (Langumuir wave) and
two coincident solutions for the tranverse waves.

b The dispersion relation for the Langmuir wave that we want to study is:

ϵ = 1−
∑
α

ω2
pα

ω(ω + iνα)
= 0 (12)

Using the condition ωpe ≫ ωpi we can simplify the dispersion relation:

ω2
pe ≈ ω(ω + iνe) ⇒ ω2 + iωνe − ω2

pe ≈ 0 (13)

where the frequency ω has an imaginary part:

ω = ωR + iωI (14)

Using the eq. (14) in the eq. (13) we find:

ω2
R − ω2

I = ω2
pe + νeωI , (real part) (15)

2iωRωI = −iνeωR, (imaginary part) (16)

and finally:

ωR =

√
ω2
pe −

ν2e
4

(17)

ωI = −νe
2

(18)

Therefore, if we consider an electric field with magnitude E ∝ e−iωt, we
have:

E ∝ e−iωt = e−iωRt e−
νe
2 t (19)

The second exponential in the equation shows the effect of the damping
due to the collisions.
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Exercise 2

a The neutron star emits electromagnetic radiation, which travels through
interstellar plasma and therefore is submited to dispersion. There may
also be longitudinal waves induced in such plasma, but these can not
propagate in vacuum. Therefore the waves that will arrive to the antenna
on Earth are only electromagnetic transverse waves.

The dispersion relation for a tranverse wave in unmagnetised plasmas is:

ω =
√

ω2
pe + k2c2 (20)

which can be derived from the linearised cold fluid equations in the case
of no magnetic field, or taking the limit B → 0 in the general dispersion
relation for a cold magnetised plasma.

For example, in the lecture we have seen that for transverse waves with
θ = 0 (propagation along the equilibrium B), the dispersion relation is

N2 =
k2c2

ω2
=

(ω + ωL)(ω − ωR)

(ω − Ωci)(ω − Ωce)
(21)

If we take B → 0, we have ωL, ωR → ωpe and Ωci,Ωce → 0, thus recoverig
the previous dispersion relation.

The group velocity (velocity of the information coming from the pulsar
and reaching the earth):

vg(ω) ≡
∂ω

∂k
=

kc2√
ω2
pe + k2c2

=

√
ω2 − ω2

pe

ω
c (22)

where k = 1
c

√
ω2 − ω2

pe.

The information from the pulsar is reaching the earth after:

t =
x

vg
=

x

c

ω√
ω2 − ω2

pe

≃ x

c

(
1 +

1

2

ω2
pe

ω2

)
(23)

supposing ω ≫ ωpe.

The total differential of the eq.(23) is:

dt =
∂

∂ω

(
x

c

(
1 +

1

2

ω2
pe

ω2

))
dω = −x

c

ω2
pe

ω3
dω (24)

therefore:
dω

dt
= − c

x

ω3

ω2
pe

⇒ df

dt
= − c

x

f3

f2
p

(25)

since f = ω/2π.
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b From the equation (25), we can evaluate the distace of the pulsar: x =

− c
df/dt

f3

f2
p
. Having ne = 2× 106 m−3, f = 80 MHz and df/dt = −5 MHz/s,

we find

fp[Hz] = 8.98× 103
√

ne[cm−3] ≃ 9
√
ne[m−3] = 1.27× 104 Hz and

x = 1.91× 1017 m = 6.6 parsec.
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