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Exercise 1

a) To show that the magnetic flux is frozen in the plasma (described by ideal
MHD), we will use the Ohm’s law:

E+ u×B = 0 (1)

and two Maxwell’s equations:

∇ ·B = 0 (2)

∇×E = −∂B

∂t
(3)

Let us consider the magnetic flux through a surface S that moves with the
plasma. This surface is bound to the plasma and varies when the plasma
moves. We have

ΦB(t) ≡
∫ ∫

S(t)

B(t) · dS

We consider a volume integral of ∇ · B for B-field at t + δt bounded by
the surfaces S(t), S(t+ δt), and Sside (see Fig. 1):

Figure 1: Sketch illustrating the integration volume and its boundary surfaces.
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∫∫∫
∇ ·B(r, t+ δt) = 0

=

∫∫
S(t)

B(r, t+ δt)︸ ︷︷ ︸
≈ B(r, t) + ∂B

∂t δt

· dS +

∫∫
S(t+δt)

B(r, t+ δt) · dS︸ ︷︷ ︸
= Φ(t + δt)

+

∫∫
Side

B(r, t+ δt) · dS

≈
∫∫

S(t)

B(r, t) · dS︸ ︷︷ ︸
= −Φ(t)

+ δt

∫∫
S(t)

∂B

∂t
(r, t) · dS + Φ(t+ δt) +

∫∫
Side

B(r, t+ δt) · dS

= −Φ(t) + δt

∫∫
S(t)

∂B

∂t
(r, t) · dS + Φ(t+ δt) +

∫∫
Side

B(r, t+ δt) · dS

(4)

as illustrated in Fig. 1, the side-surface integral is given by:∫∫
Side

B(r, t+ δt) · dS =

∮
∂S(t)≡C

B(r, t+ δt) · (δtu× dl)

= −
∮
C

δt (u×B(r, t+ δt)) · dl

≈ −δt

∮
C

(u×B(r, t)) · dl − δt2
∮
C

(
u× ∂B

∂t
(r, t)

)
· dl

≈ −δt

∮
C

(u×B(r, t)) · dl (5)

Using equations (4) and (5) we get:

δΦ = Φ(t+ δt)− Φ(t)

= δt

−
∫∫

S(t)

∂B

∂t
(r, t)︸ ︷︷ ︸

= −∇ × E

·dS +

∮
C

(u×B(r, t)) · dl



= δt


∫∫

S(t)

(∇×E(r, t)) · dS︸ ︷︷ ︸
=

∮
C

E(r, t) · dl

+

∮
C

(u×B(r, t)) · dl


= δt

∮
C

(E+ u×B)︸ ︷︷ ︸
= 0

·dl = 0 (6)

were, in the last step, we used the Ohm’s law of ideal MHD. Therefore,
the magnetic flux is frozen in the plasma (the magnetic field lines will
follow the plasma motion and vice-versa).

b) In the resistive MHD model the only equation that we used here that is
modified is Ohm’s law,

E+ u×B = ηJ
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Therefore in this case we have

dΦB

dt
= −

∫
C

ηJ · dl = −
∫
C

η

µ0
(∇×B) · dl =

∫ ∫
S

η

µ0
∇2B · dS ̸= 0

where we have used Ampere’s law and Stokes’s theorem.

c) We are looking for an equation to describe the evolution (in time) of the
magnetic field B. It’s natural to start from the Faraday equation:

∂B

∂t
= −∇×E. (7)

We write E as a function of u and J (Ohm’s law) and J as a function of
B (Ampère’s law):

E = −u×B+ ηJ = −u×B+
η

µ0
∇×B. (8)

From this equation we have (we suppose η constant):

∂B

∂t
= ∇× (u×B)− η

µ0
∇× (∇×B)

∂B

∂t
−∇× (u×B) = − η

µ0

(
∇(∇ ·B︸ ︷︷ ︸

=0

)−∇2B
)

and finally:

∂B

∂t
−∇× (u×B)︸ ︷︷ ︸

convection

=
η

µ0
∇2B︸ ︷︷ ︸

diffusion

(9)

The eq.(9) is the equation of the magnetic field transport in a plasma due
to the resistivity raising from the collisions. The term η/µ0 can be seen
as a diffusion coefficient D.

The characteristic time for the diffusion of the magnetic field B in the
plasma can be estimated from D ∼ L2/τ :

τ =

(
L2µ0

η

)
(10)

We can estimate the resistivity using the Spitzer’s formula: η ≃ 8.72 ×
10−10 Ωm:

τ ≃ 32 · 4π · 10−7

8.72× 10−10
≃ 13000 s

which is an extraordinary long time. Some Tokamak observations (saw-
tooth crashes) or astrophysical phenomena display a diffusion of the mag-
netic field at a higher rate than expected. This is usually believed to be
due to collective phenomena that enhance the plasma resistivity (anoma-
lous resistivity).
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Exercise 2

a) Consider a transverse wave in a string with tension S and mass per unit
length M (figure 2).
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Figure 2: Transverse wave in a string.

For a purely transverse wave the net force along the z direction vanishes:

|S1z| = |S2z| = S (11)

Considering the geometry of the problem:

S1y

S1z
=

S1y

S
= tan θ1 = −

(
∂y

∂z

)∣∣∣∣
z

(12)

S2y

S
= tan θ2 =

(
∂y

∂z

)∣∣∣∣
z+∆z

(13)

Using Newton’s law in the y direction:

F tot
y = m

∂2y

∂t2
⇒ S

[(
∂y

∂z

)∣∣∣∣
z+∆z

−
(
∂y

∂z

)∣∣∣∣
z

]
= M∆z

∂2y

∂t2
(14)

we have:

S

(
∂y
∂z

)∣∣∣
z+∆z

−
(

∂y
∂z

)∣∣∣
z

∆z
= M

∂2y

∂t2
(15)

and, considering the limit ∆z → 0

S
∂2y

∂z2
= M

∂2y

∂t2
⇒ ∂2y

∂z2
=

M

S

∂2y

∂t2
(16)

4



This is the equation of a wave with velocity v given by:

v =

√
S

M
(17)

b) We are considering small perturbations to a uniform equilibrium:

u0 = 0; ρ0, p0 uniforms; B0 = B0ez (18)

The linearised ideal MHD equations with respect to that equilibrium are:

∂ρ1
∂t

+ ρ0∇ · u1 = 0 (19)

ρ0
∂u1

∂t
= −∇p1 +

1

µ0
(∇×B1)×B0 (20)

∂B1

∂t
= ∇× (u1 ×B0) (21)

∂p1
∂t

= c2s
∂ρ1
∂t

(22)

We use the same geometry that has been considered during the course,
with a magnetic field along z, B = B0êz and the velocity perturbation in
the y direction:

B0 = (0, 0, B0)

u1 = (0, u1y, 0)

k = (0, 0, kz)

Note: we don’t use Fourier; nevertheless, having kx = ky = 0 in the real
space the quantities are not changing in the x and y directions (∂/∂x =
∂/∂y = 0).

Since ∂/∂y = 0 and u1 = (0, u1y, 0), we have ∇ · u1 = 0, and therefore

ρ1 = 0 and ∂p1

∂t = c2s
∂ρ1

∂t = 0, and hence, p1 = 0. Rewriting the cross
products:

u1 ×B0 =

∣∣∣∣∣∣
êx êy êz
0 u1y 0
0 0 B0

∣∣∣∣∣∣ = u1yB0êx

∇× (u1 ×B0) =

∣∣∣∣∣∣
êx êy êz
0 0 ∂

∂z
u1yB0 0 0

∣∣∣∣∣∣ = B0
∂u1y

∂z êy

(∇×B1)×B0 =

∣∣∣∣∣∣
êx êy êz

−∂B1y

∂z
∂B1x

∂z 0
0 0 B0

∣∣∣∣∣∣ = B0
∂B1x

∂z êx+ B0
∂B1y

∂z êy

The system of equations is then:

ρ0
∂u1y

∂t
=

B0

µ0

∂B1y

∂z
(23)

∂B1y

∂t
= B0

∂u1y

∂z
(24)
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If we consider the time derivative of the eq.(24):

∂2B1y

∂t2
= B0

∂2u1y

∂z∂t
; (25)

substituting the term ∂u1y/∂t from the eq.(23) we find:

∂2B1y

∂t2
= B0

∂

∂z

(
B0

µ0ρ0

∂B1y

∂z

)
=

B2
0

µ0ρ0

∂2B1y

∂z2

⇒ ∂2B1y

∂t2
=

B2
0

µ0ρ0

∂2B1y

∂z2

that is the equation of a wave propagating at the Alfvén velocity:

cA =
B0√
µ0ρ0

(26)

formally equivalent to the equation for a transvere wave on a string with
tension S and mass per unit length M :

v =

√
S

M
⇔ cA =

B0√
µ0ρ0

(27)

Therefore we can associate B2
0/µ0 (magnetic pressure) to the tension S,

and ρ0 (plasma mass density) to the mass per unit length M .

c) If we consider a plasma in ITER:

cA =
B0√
µ0ρ0

with ρ0 = mp(ADnD + nTAT ) = mpne(AD/2 +AT /2)

cA =
6√

4π · 10−7 · 1.67× 10−27 · 1020 · (1 + 1.5)
≃ 8.27× 106 ms−1

d) Which particles are resonant with the Alfvén waves? We need to estimate
the velocity of the charged particles: electrons, D ions, D beam ions, T
ions and α particles. We obtain
vth,D ≃ 7.9× 105 m/s,

vD,beam =
√

2ED

2mp
≃ 9.8× 106 m/s,

vth,T ≃ 6.4× 105 m/s,
vth,e ≃ 4.8× 107 m/s

vα =
√

2Eα

4mp
≃ 1.3× 107 m/s.

Both the beam ions and α particles have a velocity that is initially higher
than the Alfven velocity, so as they slow down via collisions with other
particles (see exercise 3 of week 3 serie) they will resonate with the Alfven
waves. The electron thermal velocity is much greater than the Alfven
velocity, so some electrons do have the resonant velocity. However, we
will see later in the course that if the gradient of the velocity distribution
is small at the resonant velocity, no resonant effect occurs.
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