
Plasma Physics I

Solution to the Series 4 (October 5, 2024)

Prof. Christian Theiler

Swiss Plasma Center (SPC)
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Exercise 1

We suppose to have uniform parameters (density, temperature, ...) in the con-
sidered volume. The relation between the electric field E and the current density
j is E = ηj. Having I = j · A, we can write I = A

η E where A = πa2 is the
section of the cylinder. The potential difference between the extremities of the
cylinder is ∆Vplasma = E · L, therefore:

∆Vplasma =
ηI

πa2
L

Using the numerical values, we find:

E =
Iη

πa2
=

Ze2
√
me4π ln Λ

(4πϵ0)23
√
2πT

3/2
e

I

πa2
≃ 5.1× 10−5 Z ln Λ

(Te[eV])
3/2

I

πa2
≃ 3× 10−3 V/m

where the Spitzer resistivity (eq. 4.28 in the course) has been used. Here,

lnΛ = 24− ln(n
1/2
e (cm−3)/Te(eV).

Finally we have:
∆Vplasma = E · L = 6 mV

If we consider a stainless steel cylinder with resistivity ηinox ≈ 7 × 10−7 Ω m,
we find:

Einox =
Iηinox
πa2

= 7×10−7 106

0.25 π
V/m ≈ 0.89 V/m ⇒ ∆Vinox = 1.78 V ≫ ∆Vplasma

Exercise 2

In the lecture, we have studied the behavior of the whole electron distribution
function under the action of a strong electric field. We used the rather strong
assumption of a drifting Maxwellian for the electrons. Here, we consider indi-
vidual electrons of the high energy tail. For these electrons, besides collisions
with ions, we also need to consider collisons with thermal electrons, such that

ν = ν
e/e′

p + ν
e/i
p , where

νe/ep = ne
e4

2πϵ20

ln Λ

m2
ev

3
e

and

νe/ip = ni
Z2e4

4πϵ20

ln Λ

memev3e

1



Using the quasineutrality condition, ne = Zni, we get the total collision
frequency as

ν = (2 + Z)
nee

4

4πϵ20

ln Λ

m2
ev

3

The momentum equation for electrons at the velocity v is:

me
dv

dt
= −eE − ν(v)mev = −eE − Fc(v)

Which is the sign of the right-side of this equation? If the friction force due
to the collisions is bigger then the acceleration force due to the electric field
(Fc(v) > e|E|), there is a deceleration until the thermal velocity is reached.

On the other hand, if e|E| > Fc(v) there is an acceleration. When the ve-
locity v increases, the friction force decrease (Fc(v) ∝ v−2) and the acceleration
is amplified (run-away regime).

Which is the expression for the minimum electric field necessary to be in the
run-away regime?

e|E| = Fc(v) = (2 + Z)
e4

4πϵ20
ne

ln Λ

m2
ev

3
mev

and the critical kinetic energy Ek,crit =
mev

2
crit

2 is:

Ek,crit = (2 + Z)
e3

8πϵ20
ne ln Λ

1

|E|
= Te

ED

|E|
where we have used the critical electric ED field defined as:

ED ≡ (2 + Z)
e3

8πϵ20
ln Λ

ne

Te

This electric field is called Dreicer field.
The numerical value of the critical kinetic energy is:

Ek,crit = (2 + 1)
(1.6× 10−19)3

8π · (8.85× 10−12)2
17

1020

3.2× 10−3
≃ 3.3× 10−12 J ≃ 21 MeV

Be careful with the notation: ED is the critical electric field and Ek,crit is
the critical kinetic energy.
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Figure 1: Force due to the electric field E and force due to the collisions for an
electron with velocity ve.

Exercise 3

a) Particle transport across the magnetic field lines could be explained by
diffusion due to charge particle collisions. However, independently of the
value of the diffusion coefficient, the measured density profile is not com-
patible with the classic diffusion. To show it, we can use the continuity
equation:

∂n

∂t
−∇ · (D⊥∇n) = S(r).

Here, S(r) is the source term due to the neutral beam injection or elec-
tromagnetic waves, that for simplicity we assume to be a radially sym-
metric, smooth function. In stationary conditions (∂n/∂t = 0), we have
−∇ · (D⊥∇n) = S(r), therefore, in radial coordinates:

−1

r

∂

∂r

[
rD⊥(r)

∂n

∂r

]
= S(r)

or, equivalently

− ∂

∂r

[
rD⊥(r)

∂n

∂r

]
= rS(r)

Integrating this expression from r = 0 to r0, we find

−
∫ r0

0

∂

∂r

[
rD⊥(r)

∂n

∂r

]
dr = −r0D⊥(r0)

∂n

∂r

∣∣∣∣
r=r0

=

∫ r0

0

rS(r)dr = A·S̄(r0)/2π > 0

where S̄(r0) can be seen as an average value of the source from r = 0 to
r = r0 and A is a surface.

Finally
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D⊥(r0) = − AS̄(r0)

r0
∂n
∂r

∣∣
r=r0

The density profile is flat for 0 ≤ r ≤ 0.5 m, therefore ∂n
∂r = 0 andD⊥ → ∞

there. Moreover, at r = 0.5 m the gradient ∂n
∂r becomes finite and D⊥ has

a discontinuity that is not possible to justify using the classical theory.

b) An effective diffusion coefficient can be estimated at r = 0.5 m by consid-
ering the density gradient at this position. If we write

Γn = −Deff∇n

we find Deff = Γn

∂n/∂r = 8×1020

1021 = 0.8 m2s−1.

The characteristic length we should use to estimate the classical diffusion
across the magnetic field lines is the Larmor radius. We need to con-
sider the collision frequency for the momentum transfer between un-like
particles:

D⊥,α ≃ ρ2L,αν̄
α/β
p (1)

In this case, the diffusion is automatically ambipolar becauseD⊥,e ≃ D⊥,i = D⊥.

If we consider a hydrogen plasma, the collision frequency for electrons is:

ρL,e [m] =

√
meTe

|e|B
≃ 2.38× 10−6

√
Te [eV]

B [T]
≃ 1.2× 10−4 m

ν̄e/ip [s−1] =
1

3

√
2

π

niZ
2e4 ln Λ

4πϵ20m
1/2
e

1

T
3/2
e

= 4.41×10−11 ni [m
−3]

T
3/2
e [eV]

= 4.41×103 s−1

therefore, the diffusion coefficient is:

D⊥ ≃ (1.2× 10−4)2 · 4.41× 103 ≃ 6.25× 10−5 m2s−1 ≪ Deff (2)

c) The mechanism for particle transport in a tokamak is clearly not classical
diffusion. Even neoclassical diffusion (which takes into account corrections
due to toroidal effects on particle orbits and which has not been treated
during the lecture) is not enough at all to explain such high level of trans-
port, i.e. Deff ∼ 1. This anomalous transport is attributed to collective
effects in the plasma dynamics, which produce turbulent flows of particles
and heat.

4


